百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

厉害了,在Pandas中用SQL来查询数据,效率超高

liuian 2024-12-20 17:19 20 浏览

作者:俊欣

来源:关于数据分析与可视化

今天我们继续来讲一下PandasSQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块

pip install pandasql

要是你目前正在使用jupyter notebook,也可以这么来下载

!pip install pandasql

导入数据

我们首先导入数据

import pandas as pd
from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()

output

我们先对导入的数据集做一个初步的探索性分析,

df.info()

output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9999 entries, 0 to 9998
Data columns (total 12 columns):
 #   Column               Non-Null Count  Dtype  
---  ------               --------------  -----  
 0   OrderID              9999 non-null   int64  
 1   Quantity             9999 non-null   int64  
 2   UnitPrice(USD)       9999 non-null   int64  
 3   Status               9999 non-null   object 
 4   OrderDate            9999 non-null   object 
 5   Product_Category     9963 non-null   object 
 6   Sales_Manager        9999 non-null   object 
 7   Shipping_Cost(USD)   9999 non-null   int64  
 8   Delivery_Time(Days)  9948 non-null   float64
 9   Shipping_Address     9999 non-null   object 
 10  Product_Code         9999 non-null   object 
 11  OrderCode            9999 non-null   int64  
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB

再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下

df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD",
                   "UnitPrice(USD)":"UnitPrice_USD",
                   "Delivery_Time(Days)":"Delivery_Time_Days"},
          inplace=True)
df.info()

output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9999 entries, 0 to 9998
Data columns (total 12 columns):
 #   Column              Non-Null Count  Dtype  
---  ------              --------------  -----  
 0   OrderID             9999 non-null   int64  
 1   Quantity            9999 non-null   int64  
 2   UnitPrice_USD       9999 non-null   int64  
 3   Status              9999 non-null   object 
 4   OrderDate           9999 non-null   object 
 5   Product_Category    9963 non-null   object 
 6   Sales_Manager       9999 non-null   object 
 7   ShippingCost_USD    9999 non-null   int64  
 8   Delivery_Time_Days  9948 non-null   float64
 9   Shipping_Address    9999 non-null   object 
 10  Product_Code        9999 non-null   object 
 11  OrderCode           9999 non-null   int64  
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB

用SQL筛选出若干列来

我们先尝试筛选出OrderIDQuantitySales_ManagerStatus等若干列数据,用SQL语句应该是这么来写的

SELECT OrderID, Quantity, Sales_Manager, \
Status, Shipping_Address, ShippingCost_USD \
FROM df

Pandas模块联用的时候就这么来写

query = "SELECT OrderID, Quantity, Sales_Manager,\
Status, Shipping_Address, ShippingCost_USD \
FROM df"

df_orders = sqldf(query)
df_orders.head()

output

SQL中带WHERE条件筛选

我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下

query = "SELECT * \
        FROM df_orders \
        WHERE Shipping_Address = 'Kenya'"
        
df_kenya = sqldf(query)
df_kenya.head()

output

而要是条件不止一个,则用AND来连接各个条件,代码如下

query = "SELECT * \
        FROM df_orders \
        WHERE Shipping_Address = 'Kenya' \
        AND Quantity < 40 \
        AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head()

output

分组

同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下

query = "SELECT Shipping_Address, \
        COUNT(OrderID) AS Orders \
        FROM df_orders \
        GROUP BY Shipping_Address"

df_group = sqldf(query)
df_group.head(10)

output

排序

而排序在SQL当中则是用ORDER BY,代码如下

query = "SELECT Shipping_Address, \
        COUNT(OrderID) AS Orders \
        FROM df_orders \
        GROUP BY Shipping_Address \
        ORDER BY Orders"

df_group = sqldf(query)
df_group.head(10)

output

数据合并

我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下

query = "SELECT OrderID,\
        Quantity, \
        Product_Code, \
        Product_Category, \
        UnitPrice_USD \
        FROM df"
df_products = sqldf(query)
df_products.head()

output

我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下

query = "SELECT T1.OrderID, \
        T1.Shipping_Address, \
        T2.Product_Category \
        FROM df_orders T1\
        INNER JOIN df_products T2\
        ON T1.OrderID = T2.OrderID"

df_combined = sqldf(query)
df_combined.head()

output

与LIMIT之间的联用

SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下

query = "SELECT OrderID, Quantity, Sales_Manager, \ 
Status, Shipping_Address, \
ShippingCost_USD FROM df LIMIT 10"

df_orders_limit = sqldf(query)
df_orders_limit

output

相关推荐

面试怕被问Hashmap,多看看这个文章

o数据结构otable数组长度永远为2的幂次方o那么为什么要把数组长度设计为2的幂次方呢?o扩容o链表树化o红黑树拆分o查找o插入o删除o遍历oequasl和hashcode总结HashMap是面试中...

非常简洁地重试Retry组件,使用起来杠杠的

前言小伙伴是不是经常遇到接口调用异常,超时的场景?尤其网络抖动导致timeout超时的场景,我们一般产品就会叫我们要重试几次。很多小伙伴的实现方式是写个循环调用for(inti=1;i<=3;...

Kafka消息可靠传输之幂等、事务机制

一般而言,消息中间件的消息传输保障有3个层级,分别如下。atmostonce:至多一次。消息可能会丢失,但绝对不会重复传输。atleastonce:最少一次。消息绝不会丢失,但可能会重复传输。...

Seata源码—9.Seata XA模式的事务处理

大纲1.SeataXA分布式事务案例及AT与XA的区别2.SeataXA分布式事务案例的各模块运行流程3.Seata使用SpringBoot自动装配简化复杂配置4.全局事务注解扫描组件的自动装配...

Disruptor—3.核心源码实现分析一

大纲1.Disruptor的生产者源码分析2.Disruptor的消费者源码分析3.Disruptor的WaitStrategy等待策略分析4.Disruptor的高性能原因5.Disruptor高性...

Spring Boot 进阶-详解SpringBoot中条件注解使用

作为使用SpringBoot框架的开发者来讲,如果你连如下的这些注解你都没有听说过,没有用过,那我劝你还是放弃吧?在SpringBoot中我们最常见到的注解应该是条件注解了吧!也就是@Condit...

如何自定义编解码器(如何自定义编解码器的程序)

1.前言上一节我们一节了解了什么是编码解码、序列化和反序列化了,并且留有一道思考题,本节内容主要是深入解析该思考题。思考题:能否把我们的编码和解码封装成独立的Handler呢?那么应该如何去封装...

Disruptor—3.核心源码实现分析二

大纲1.Disruptor的生产者源码分析2.Disruptor的消费者源码分析3.Disruptor的WaitStrategy等待策略分析4.Disruptor的高性能原因5.Disruptor高性...

线程的状态有哪些?它是如何工作的?

线程的状态有哪些?它是如何工作的?线程(Thread)是并发编程的基础,也是程序执行的最小单元,它依托进程而存在。一个进程中可以包含多个线程,多线程可以共享一块内存空间和一组系统资源,因此线程之间的切...

有图解有案例,我终于把Condition的原理讲透彻了

平时加解锁都是直接使用Synchronized关键字来实现的,简单好用,为啥还要引用ReentrantLock呢?为了解决小伙伴的疑问,我们来对两者做个简单的比较吧:相同点两者都是“可重入锁”,即当前...

白话DUBBO原理,通俗易记,再也不怕面试时讲不清楚了

现在的各种面试免不了要问些中间件,尤其是互联网公司,更注重获选人对中间件的掌握情况。在中间件中,有一大类是关于RPC框架的,Dubbo即是阿里出品的一款很著名的RPC中间件,很多互联网公司都在用,面试...

Java 最细的集合类总结(java常用的集合类有哪些)

数据结构作为每一个开发者不可回避的问题,而Java对于不同的数据结构提供了非常成熟的实现,这一个又一个实现既是面试中的难点,也是工作中必不可少的工具,在此,笔者经历漫长的剖析,将其抽丝剥茧的呈现出...

详解Java异常(Exception)处理及常见异常

很多事件并非总是按照人们自己设计意愿顺利发展的,经常出现这样那样的异常情况。例如:你计划周末郊游,计划从家里出发→到达目的→游泳→烧烤→回家。但天有不测风云,当你准备烧烤时候突然天降大雨,只能终止郊...

为什么阿里强制要求不要在foreach循环里进行元素remove和add操作

在阅读《阿里巴巴Java开发手册》时,发现有一条关于在foreach循环里进行元素的remove/add操作的规约,具体内容如下:错误演示我们首先在IDEA中编写一个在foreach循...

SpringBoot条件化配置(@Conditional)全面解析与实战指南

一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...