百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

为了做数据处理和分析,我写了这篇Pandas常用操作大全

liuian 2024-12-20 17:19 24 浏览

推荐学习

01 引入依赖

# 导入模块
import pymysql
import pandas as pd
import numpy as np
import time
# 数据库
from sqlalchemy import create_engine
# 可视化
import matplotlib.pyplot as plt
# 如果你的设备是配备Retina屏幕的mac,可以在jupyter notebook中,使用下面一行代码有效提高图像画质
%config InlineBackend.figure_format = 'retina'
# 解决 plt 中文显示的问题 mymac
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# 设置显示中文 需要先安装字体 aistudio
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
import seaborn as sns
# notebook渲染图片
%matplotlib inline
import pyecharts
# 忽略版本问题
import warnings
warnings.filterwarnings("ignore")  
# 下载中文字体
!wget https://mydueros.cdn.bcebos.com/font/simhei.ttf 
# 将字体文件复制到 matplotlib'字体路径
!cp simhei.ttf /opt/conda/envs/python35-paddle120-env/Lib/python3,7/site-packages/matplotib/mpl-data/fonts.
# 一般只需要将字体文件复制到系统字体田录下即可,但是在 studio上该路径没有写权限,所以此方法不能用 
# !cp simhei. ttf /usr/share/fonts/
# 创建系统字体文件路径
!mkdir .fonts
# 复制文件到该路径
!cp simhei.ttf .fonts/
!rm -rf .cache/matplotlib

算法相关依赖

# 数据归一化
from sklearn.preprocessing import MinMaxScaler
# kmeans聚类
from sklearn.cluster import KMeans
# DBSCAN聚类
from sklearn.cluster import DBSCAN
# 线性回归算法
from sklearn.linear_model import LinearRegression
# 逻辑回归算法
from sklearn.linear_model import LogisticRegression
# 高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
# 划分训练/测试集
from sklearn.model_selection import train_test_split
# 准确度报告
from sklearn import metrics
# 矩阵报告和均方误差
from sklearn.metrics import classification_report, mean_squared_error

02 获取数据

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://root:root@127.0.0.1:3306/ry?charset=utf8')
# 查询插入后相关表名及行数
result_query_sql = "use information_schema;"
engine.execute(result_query_sql)
result_query_sql = "SELECT table_name,table_rows FROM tables WHERE TABLE_NAME LIKE 'log%%' order by table_rows desc;"
df_result = pd.read_sql(result_query_sql, engine)

03 生成df

# list转df
df_result = pd.DataFrame(pred,columns=['pred'])
df_result['actual'] = test_target
df_result
# df取子df
df_new = df_old[['col1','col2']]
# dict生成df
df_test = pd.DataFrame({'A':[0.587221, 0.135673, 0.135673, 0.135673, 0.135673], 
                        'B':['a', 'b', 'c', 'd', 'e'],
                        'C':[1, 2, 3, 4, 5]})
# 指定列名
data = pd.DataFrame(dataset.data, columns=dataset.feature_names)
# 使用numpy生成20个指定分布(如标准正态分布)的数
tem = np.random.normal(0, 1, 20)
df3 = pd.DataFrame(tem)
# 生成一个和df长度相同的随机数dataframe
df1 = pd.DataFrame(pd.Series(np.random.randint(1, 10, 135)))

04 重命名列

# 重命名列
data_scaled = data_scaled.rename(columns={'本体油位': 'OILLV'})

05 增加列

# df2df
df_jj2yyb['r_time'] = pd.to_datetime(df_jj2yyb['cTime'])
# 新增一列根据salary将数据分为3组
bins = [0,5000, 20000, 50000]
group_names = ['低', '中', '高']
df['categories'] = pd.cut(df['salary'], bins, labels=group_names)

06 缺失值处理

# 检查数据中是否含有任何缺失值
df.isnull().values.any()
# 查看每列数据缺失值情况
df.isnull().sum()
# 提取某列含有空值的行
df[df['日期'].isnull()]
# 输出每列缺失值具体行数
for i in df.columns:
    if df[i].count() != len(df):
        row = df[i][df[i].isnull().values].index.tolist()
        print('列名:"{}", 第{}行位置有缺失值'.format(i,row))
# 众数填充
heart_df['Thal'].fillna(heart_df['Thal'].mode(dropna=True)[0], inplace=True)
# 连续值列的空值用平均值填充
dfcolumns = heart_df_encoded.columns.values.tolist()
for item in dfcolumns:
    if heart_df_encoded[item].dtype == 'float':
       heart_df_encoded[item].fillna(heart_df_encoded[item].median(), inplace=True)

07 独热编码

df_encoded = pd.get_dummies(df_data)

08 替换值

# 按列值替换
num_encode = {
    'AHD': {'No':0, "Yes":1},
}
heart_df.replace(num_encode,inplace=True)

09 删除列

df_jj2.drop(['coll_time', 'polar', 'conn_type', 'phase', 'id', 'Unnamed: 0'],axis=1,inplace=True)

10 数据筛选

# 取第33行数据
df.iloc[32]
# 某列以xxx字符串开头
df_jj2 = df_512.loc[df_512["transformer"].str.startswith('JJ2')]
df_jj2yya = df_jj2.loc[df_jj2["变压器编号"]=='JJ2YYA']
# 提取第一列中不在第二列出现的数字
df['col1'][~df['col1'].isin(df['col2'])]
# 查找两列值相等的行号
np.where(df.secondType == df.thirdType)
# 包含字符串
results = df['grammer'].str.contains("Python")
# 提取列名
df.columns
# 查看某列唯一值(种类)
df['education'].nunique()
# 删除重复数据
df.drop_duplicates(inplace=True)
# 某列等于某值
df[df.col_name==0.587221]
# df.col_name==0.587221 各行判断结果返回值(True/False)
# 查看某列唯一值及计数
df_jj2["变压器编号"].value_counts()
# 时间段筛选
df_jj2yyb_0501_0701 = df_jj2yyb[(df_jj2yyb['r_time'] >=pd.to_datetime('20200501')) & (df_jj2yyb['r_time'] <= pd.to_datetime('20200701'))]
# 数值筛选
df[(df['popularity'] > 3) & (df['popularity'] < 7)]
# 某列字符串截取
df['Time'].str[0:8]
# 随机取num行
ins_1 = df.sample(n=num)
# 数据去重
df.drop_duplicates(['grammer'])
# 按某列排序(降序)
df.sort_values("popularity",inplace=True, ascending=False)
# 取某列最大值所在行
df[df['popularity'] == df['popularity'].max()]
# 取某列最大num行
df.nlargest(num,'col_name')
# 最大num列画横向柱形图
df.nlargest(10).plot(kind='barh')

11 差值计算

# axis=0或index表示上下移动, periods表示移动的次数,为正时向下移,为负时向上移动。
print(df.diff( periods=1, axis=‘index‘))
print(df.diff( periods=-1, axis=0))
# axis=1或columns表示左右移动,periods表示移动的次数,为正时向右移,为负时向左移动。
print(df.diff( periods=1, axis=‘columns‘))
print(df.diff( periods=-1, axis=1))
# 变化率计算
data['收盘价(元)'].pct_change()
# 以5个数据作为一个数据滑动窗口,在这个5个数据上取均值
df['收盘价(元)'].rolling(5).mean()

12 数据修改

# 删除最后一行
df = df.drop(labels=df.shape[0]-1)
# 添加一行数据['Perl',6.6]
row = {'grammer':'Perl','popularity':6.6}
df = df.append(row,ignore_index=True)
# 某列小数转百分数
df.style.format({'data': '{0:.2%}'.format})
# 反转行
df.iloc[::-1, :]
# 以两列制作数据透视
pd.pivot_table(df,values=["salary","score"],index="positionId")
# 同时对两列进行计算
df[["salary","score"]].agg([np.sum,np.mean,np.min])
# 对不同列执行不同的计算
df.agg({"salary":np.sum,"score":np.mean})

13 时间格式转换

# 时间戳转时间字符串
df_jj2['cTime'] =df_jj2['coll_time'].apply(lambda x: time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(x)))
# 时间字符串转时间格式
df_jj2yyb['r_time'] = pd.to_datetime(df_jj2yyb['cTime'])
# 时间格式转时间戳
dtime = pd.to_datetime(df_jj2yyb['r_time'])
v = (dtime.values - np.datetime64('1970-01-01T08:00:00Z')) / np.timedelta64(1, 'ms')
df_jj2yyb['timestamp'] = v

14 设置索引列

df_jj2yyb_small_noise = df_jj2yyb_small_noise.set_index('timestamp')

15 折线图

fig, ax = plt.subplots()
df.plot(legend=True, ax=ax)
plt.legend(loc=1)
plt.show()
plt.figure(figsize=(20, 6))
plt.plot(max_iter_list, accuracy, color='red', marker='o',
         markersize=10)
plt.title('Accuracy Vs max_iter Value')
plt.xlabel('max_iter Value')
plt.ylabel('Accuracy')

16 散点图

plt.scatter(df[:, 0], df[:, 1], c="red", marker='o', label='lable0')   
plt.xlabel('x')  
plt.ylabel('y')  
plt.legend(loc=2)  
plt.show()  


17 柱状图

df = pd.Series(tree.feature_importances_, index=data.columns)
# 取某列最大Num行画横向柱形图
df.nlargest(10).plot(kind='barh')

18 热力图

df_corr = combine.corr()
plt.figure(figsize=(20,20))
g=sns.heatmap(df_corr,annot=True,cmap="RdYlGn")


19 66个最常用的pandas数据分析函数

df #任何pandas DataFrame对象 
s #任何pandas series对象

从各种不同的来源和格式导入数据

pd.read_csv(filename) # 从CSV文件 
pd.read_table(filename) # 从分隔的文本文件(例如CSV)中 
pd.read_excel(filename) # 从Excel文件 
pd.read_sql(query, connection_object) # 从SQL表/数据库中读取 
pd.read_json(json_string) # 从JSON格式的字符串,URL或文件中读取。
pd.read_html(url) # 解析html URL,字符串或文件,并将表提取到数据帧列表 
pd.read_clipboard() # 获取剪贴板的内容并将其传递给 read_table() 
pd.DataFrame(dict) # 从字典中,列名称的键,列表中的数据的值

导出数据

df.to_csv(filename) # 写入CSV文件 
df.to_excel(filename) # 写入Excel文件 
df.to_sql(table_name, connection_object) # 写入SQL表 
df.to_json(filename) # 以JSON格式写入文件

创建测试对象

pd.DataFrame(np.random.rand(20,5))               # 5列20行随机浮点数 pd.Series(my_list)                               # 从一个可迭代的序列创建一个序列 my_list 
df.index = pd.date_range('1900/1/30', periods=df.shape[0]) # 添加日期索引

查看、检查数据

df.head(n)                       # DataFrame的前n行 
df.tail(n)                       # DataFrame的最后n行 
df.shape                         # 行数和列数 
df.info()                        # 索引,数据类型和内存信息 
df.describe()                    # 数值列的摘要统计信息 
s.value_counts(dropna=False)     # 查看唯一值和计数 
df.apply(pd.Series.value_counts) # 所有列的唯一值和计数

数据选取

使用这些命令选择数据的特定子集。
df[col]               # 返回带有标签col的列 
df[[col1, col2]]      # 返回列作为新的DataFrame 
s.iloc[0]             # 按位置选择 
s.loc['index_one']    # 按索引选择 
df.iloc[0,:]          # 第一行 
df.iloc[0,0]          # 第一栏的第一元素

数据清理

df.columns = ['a','b','c']                  # 重命名列 
pd.isnull()                                 # 空值检查,返回Boolean Arrray 
pd.notnull()                                # 与pd.isnull() 相反 
df.dropna()                                 # 删除所有包含空值的行 
df.dropna(axis=1)                           # 删除所有包含空值的列 
df.dropna(axis=1,thresh=n)                  # 删除所有具有少于n个非null值的行 
df.fillna(x)                                # 将所有空值替换为x 
s.fillna(s.mean())                          # 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) 
s.astype(float)                             # 将系列的数据类型转换为float 
s.replace(1,'one')                          # 1 用 'one' 
s.replace([1,3],['one','three'])            # 替换所有等于的值 替换为所有1 'one' ,并 3 用 'three' df.rename(columns=lambda x: x + 1)          # 列的重命名 
df.rename(columns={'old_name': 'new_ name'})# 选择性重命名 
df.set_index('column_one')                  # 更改索引 
df.rename(index=lambda x: x + 1)            # 大规模重命名索引

筛选,排序和分组依据

df[df[col] > 0.5]                      # 列 col 大于 0.5 df[(df[col] > 0.5) & (df[col] < 0.7)]  # 小于 0.7 大于0.5的行 
df.sort_values(col1)                   # 按col1升序对值进行排序 
df.sort_values(col2,ascending=False)   # 按col2 降序对值进行 排序 
df.sort_values([col1,col2],ascending=[True,False]) #按 col1 升序排序,然后 col2 按降序排序 
df.groupby(col)                        #从一个栏返回GROUPBY对象 
df.groupby([col1,col2]) # 返回来自多个列的groupby对象 
df.groupby(col1)[col2]                 # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) 
df.pivot_table(index=col1,values=[col2,col3],aggfunc=mean) # 创建一个数据透视表组通过 col1 ,并计算平均值的 col2 和 col3 
df.groupby(col1).agg(np.mean)          # 在所有列中找到每个唯一col1 组的平均值 
df.apply(np.mean)                      #np.mean() 在每列上应用该函数 
df.apply(np.max,axis=1)                # np.max() 在每行上应用功能

数据合并

df1.append(df2)                   # 将df2添加 df1的末尾 (各列应相同) 
pd.concat([df1, df2],axis=1)      # 将 df1的列添加到df2的末尾 (行应相同) 
df1.join(df2,on=col1,how='inner') # SQL样式将列 df1 与 df2 行所在的列col 具有相同值的列连接起来。'how'可以是一个 'left', 'right', 'outer', 'inner'

数据统计

df.describe()    # 数值列的摘要统计信息 
df.mean()        # 返回均值的所有列 
df.corr()        # 返回DataFrame中各列之间的相关性 
df.count()       # 返回非空值的每个数据帧列中的数字 
df.max()         # 返回每列中的最高值 
df.min()         # 返回每一列中的最小值 
df.median()      # 返回每列的中位数 
df.std()         # 返回每列的标准偏差

16个函数,用于数据清洗

# 导入数据集
import pandas as pd
df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'],
     '英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'],
     '性别':['男','women','men','女','男'],
     '身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'],
     '身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'],
     '家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'],
     '电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'],
     '收入':['1.1万','8.5千','0.9万','6.5千','2.0万']}
df = pd.DataFrame(df)
df

1.cat函数

用于字符串的拼接

df["姓名"].str.cat(df["家庭住址"],sep='-'*3)

2.contains

判断某个字符串是否包含给定字符

df["家庭住址"].str.contains("广")

3.startswith/endswith

判断某个字符串是否以…开头/结尾

# 第一个行的“ 黄伟”是以空格开头的
df["姓名"].str.startswith("黄") 
df["英文名"].str.endswith("e")

4.count

计算给定字符在字符串中出现的次数

df["电话号码"].str.count("3")

5.get

获取指定位置的字符串

df["姓名"].str.get(-1)
df["身高"].str.split(":")
df["身高"].str.split(":").str.get(0)

6.len

计算字符串长度

df["性别"].str.len()

7.upper/lower

英文大小写转换

df["英文名"].str.upper()
df["英文名"].str.lower()

8.pad+side参数/center

在字符串的左边、右边或左右两边添加给定字符

df["家庭住址"].str.pad(10,fillchar="*")      # 相当于ljust()
df["家庭住址"].str.pad(10,side="right",fillchar="*")    # 相当于rjust()
df["家庭住址"].str.center(10,fillchar="*")

9.repeat

重复字符串几次

df["性别"].str.repeat(3)

10.slice_replace

使用给定的字符串,替换指定的位置的字符

df["电话号码"].str.slice_replace(4,8,"*"*4)

11.replace

将指定位置的字符,替换为给定的字符串

df["身高"].str.replace(":","-")

12.replace

将指定位置的字符,替换为给定的字符串(接受正则表达式)

replace中传入正则表达式,才叫好用;

先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用;

df["收入"].str.replace("\d+\.\d+","正则")

13.split方法+expand参数

搭配join方法功能很强大

# 普通用法
df["身高"].str.split(":")
# split方法,搭配expand参数
df[["身高描述","final身高"]] = df["身高"].str.split(":",expand=True)
df
# split方法搭配join方法
df["身高"].str.split(":").str.join("?"*5)

14.strip/rstrip/lstrip

去除空白符、换行符

df["姓名"].str.len()
df["姓名"] = df["姓名"].str.strip()
df["姓名"].str.len()

15.findall

利用正则表达式,去字符串中匹配,返回查找结果的列表

findall使用正则表达式,做数据清洗,真的很香!

df["身高"]
df["身高"].str.findall("[a-zA-Z]+")

16.extract/extractall

接受正则表达式,抽取匹配的字符串(一定要加上括号)

df["身高"].str.extract("([a-zA-Z]+)")
# extractall提取得到复合索引
df["身高"].str.extractall("([a-zA-Z]+)")
# extract搭配expand参数
df["身高"].str.extract("([a-zA-Z]+).*?([a-zA-Z]+)",expand=True)

作者:SeafyLiang

原文链接:https://blog.csdn.net/SeafyLiang/article/details/115338648

相关推荐

快速上手maven

Maven的作用在开发过程中需要用到各种各样的jar包,查找和下载这些jar包是件费时费力的事,特别是英文官方网站,可以将Maven看成一个整合了所有开源jar包的合集,我们需要jar包只需要从Mav...

Windows系统——配置java环境变量

怎么配置java环境变量呢?首先是安装好jdk然后我的电脑右键选择属性然后选择左侧高级系统设置高级然后点环境变量然后在用户变量或系统变量中配置,用户变量指的是只有当前用户可用,系统变量指的是系统中...

ollama本地部署更改默认C盘,Windows配置环境变量方法

ollama是一个大语言模型(LLM——LargeLanguageModel),本地电脑安装网上也要很多教程,看上去非常简单,一直下一步,然后直接就可以使用了。但是我在实操的时候并不是这样,安装完...

# Windows 环境变量 Path 显示样式更改

#怎样学习Java##Windows环境变量Path显示样式更改##1、传统Path环境变量显示:```---》键盘上按【WIN+I】打开系统【设置】---》依次点击---》【系统...

如何在Windows中创建用户和系统环境变量

在Windows中创建环境变量之前您应该了解的事情在按照本指南中所示的任何步骤创建指向文件夹、文件或其他任何内容的用户和系统变量之前,您应该了解两件事。第一个也是最重要的一个是了解什么是环境变量。...

Windows 中的环境变量是什么?

Windows中的环境变量是什么?那么,Windows中的环境变量是什么?简而言之,环境变量是描述应用程序和程序运行环境的变量。所有类型的程序都使用环境变量来回答以下问题:我安装的计算机的名称是什么...

【Python程序开发系列】谈一谈Windows环境变量:系统和用户变量

这是我的第350篇原创文章。一、引言环境变量(environmentvariables)一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等。环境变量是在操作...

系统小技巧:还原Windows10路径环境变量

有时,我们在Windows10的“运行”窗口中执行一些命令或运行一些程序,这时即便没有指定程序的具体路径,只输入程序的名称(如notepad.exe),便可以迅速调用成功。这是因为Windows默认...

Windows10系统的“环境变量”在哪里呢?

当我们在操作系统是Windows10的电脑里安装了一些软件,要通过配置环境变量才能使用软件时,在哪里能找到“环境变量”窗口呢?可以按照下面的步骤找到“环境变量”。说明:下面的步骤和截图是在Window...

系统小技巧:彻底弄懂Windows 10环境变量

每当我们进行系统清理时,清理软件总能自动找到Windows的临时文件夹之所在,然后加以清理,即便是我们重定向了TEMP目录也是如此。究其原因,是因为清理软件会根据TEMP环境变量来判断现有临时文件夹的...

MySQL 5.7 新特性大全和未来展望

本文转自微信公众号:高可用架构作者:杨尚刚引用美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计。前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存...

MySQL系列-源码编译安装(v8.0.25)

一、前言生产环境建议使用二进制安装法,其优点是部署简单、快速、方便,并且相对"yum/rpm安装"方法能更方便地自定义文件存放的目录结构,方便用脚本批量部署,方便日后运维管理。在生产...

MySQL如何实时同步数据到ES?试试这款阿里开源的神器!

前几天在网上冲浪的时候发现了一个比较成熟的开源中间件——Canal。在了解了它的工作原理和使用场景后,顿时产生了浓厚的兴趣。今天,就让我们跟随我的脚步,一起来揭开它神秘的面纱吧。简介canal翻译为...

技术老兵十年专攻MySQL:编写了763页核心总结,90%MySQL问题全解

MySQL是开放源码的关系数据库管理系统,由于性能高、成本低、可靠性好,成为现在最流行的开源数据库。MySQL学习指南笔记领取方式:关注、转发后私信小编【111】即可免费获得《MySQL进阶笔记》的...

Mysql和Hive之间通过Sqoop进行数据同步

文章回顾理论大数据框架原理简介大数据发展历程及技术选型实践搭建大数据运行环境之一搭建大数据运行环境之二本地MAC环境配置CPU数和内存大小查看CPU数sysctl machdep.cpu...