百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

推荐2个十分好用的pandas数据探索分析神器

liuian 2024-12-20 17:19 21 浏览

作者: 俊欣

来源:关于数据分析与可视化

今天小编给大家推荐两款超好用的工具来对数据进行探索分析。更好地帮助数据分析师从数据集当中来挖掘出有用的信息

PandasGUI

一听到这个名字,大家想必就会知道这个工具是在Pandas的基础之上加了GUI界面,它所具备的主要功能有:

  • 查看DataFrame数据集与Series数据集
  • 交互式地绘制图表
  • 过滤数据
  • 统计分析
  • 数据的修改与复制粘贴
  • 拖放导入csv文件
  • 搜索工具栏

当然在使用之前,我们先要安装好该工具

pip install pandasgui

然后我们导入该工具,并且用它来查看某个数据集,代码如下

import pandas as pd
from pandasgui import show

df = pd.read_excel(
    io=r'supermarkt_sales.xlsx',
    engine="openpyxl", sheet_name="Sales",
    skiprows=3, usecols="B:R",
    nrows=1000
)

show(df)

运行上述的代码之后会弹出一个GUI界面

我们先来看一下弹出的页面当中的布局,最左边是数据集的形状,比方说1000*17,具体看下图

过滤数据

数据过滤时候,我们需要填入相应的条件,主要是在中间这一列中输入,例如我们想要筛选出来的数据需要满足

  • 省份:浙江
  • 顾客类型:会员
  • 性别:男性

以上这几个条件,我们可以这么来做,在filter这一列当中依次输入筛选的条件,如下图

数据的修改与复制粘贴

同时我们还可以修改当中的数据

以及将里面的数据复制/粘贴出来

数据的统计分析

PandasGUI这个工具当中,我们还能够对数据集进行统计分析,切换到Statistics选项当中就能够看到

当中的统计变量有“平均值”、“最大/最小值”和“标准差”,包括每一个变量的数据类型也在当中有展示出来

绘制交互式图表

我们还能够在上面绘制交互之图表,支持的图表类型有柱状图、散点图、折线图、饼图等等

例如柱状图,我们看到有x轴和y轴,我们只需要将相对应的列拖拽到x轴或者是y轴即可

数据集的变形

Reshaper这个选项当中,我们可以将现有的数据集与其他的数据集合并,和pandas当中的merge()方法一样,同时我们也能制作透视表,和pandas当中的pivot_table()方法一样

当然我们还可以将以上的操作转换成代码的形式,通过点击Code Export这个按钮

支持csv文件的导入与导出

同时这里还支持csv文件的导入与导出,让我们更加快捷的操作数据集

Jupyter当中的小插件

下面小编给大家介绍一个在Jupyter当中使用的小插件名叫ipympl,能够使得matplotlib绘制出来的图表也能够具备交互性的特征,当然在使用之前,我们先要安装上该插件

通过pip来安装

pip install ipympl

也可以通过conda来进行安装

conda install -c conda-forge ipympl

然后涉及到具体的使用,我们导入相关的模块

%matplotlib widget
import pandas as pd
import matplotlib.pyplot as plt

我们使用常用的iris.csv来进行图表的绘制

plt.scatter('sepal_length(cm)', 'petal_width(cm)', data=iris)
plt.xlabel('Sepal Length')
plt.ylabel('Petal Width')
plt.show()

output

从上面的结果来看,绘制出来的图表具备交互性,并且可以任意我们放大、缩小以及拖拽,并且可以将绘制好的图表下载到本地,而针对具有多个子图的图表,也能够实现交互式的绘制

np.random.seed(0)

n_bins = 20
x = np.random.randn(1000, 3)

fig, axes = plt.subplots(nrows=2, ncols=2)
ax0, ax1, ax2, ax3 = axes.flatten()

colors = ['red', 'blue', 'yellow']
ax0.hist(x, n_bins, density=1, histtype='bar', color=colors, label=colors)
ax0.legend(prop={'size': 10})
ax0.set_title('bars with legend')

ax1.hist(x, n_bins, density=1, histtype='bar', stacked=True, color=colors)
ax1.set_title('stacked bar')

ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)
ax2.set_title('stack step (unfilled)')

x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]
ax3.hist(x_multi, n_bins, histtype='bar', color=colors)
ax3.set_title('different sample sizes')

fig.tight_layout()
plt.show()

output

相关推荐

面试怕被问Hashmap,多看看这个文章

o数据结构otable数组长度永远为2的幂次方o那么为什么要把数组长度设计为2的幂次方呢?o扩容o链表树化o红黑树拆分o查找o插入o删除o遍历oequasl和hashcode总结HashMap是面试中...

非常简洁地重试Retry组件,使用起来杠杠的

前言小伙伴是不是经常遇到接口调用异常,超时的场景?尤其网络抖动导致timeout超时的场景,我们一般产品就会叫我们要重试几次。很多小伙伴的实现方式是写个循环调用for(inti=1;i<=3;...

Kafka消息可靠传输之幂等、事务机制

一般而言,消息中间件的消息传输保障有3个层级,分别如下。atmostonce:至多一次。消息可能会丢失,但绝对不会重复传输。atleastonce:最少一次。消息绝不会丢失,但可能会重复传输。...

Seata源码—9.Seata XA模式的事务处理

大纲1.SeataXA分布式事务案例及AT与XA的区别2.SeataXA分布式事务案例的各模块运行流程3.Seata使用SpringBoot自动装配简化复杂配置4.全局事务注解扫描组件的自动装配...

Disruptor—3.核心源码实现分析一

大纲1.Disruptor的生产者源码分析2.Disruptor的消费者源码分析3.Disruptor的WaitStrategy等待策略分析4.Disruptor的高性能原因5.Disruptor高性...

Spring Boot 进阶-详解SpringBoot中条件注解使用

作为使用SpringBoot框架的开发者来讲,如果你连如下的这些注解你都没有听说过,没有用过,那我劝你还是放弃吧?在SpringBoot中我们最常见到的注解应该是条件注解了吧!也就是@Condit...

如何自定义编解码器(如何自定义编解码器的程序)

1.前言上一节我们一节了解了什么是编码解码、序列化和反序列化了,并且留有一道思考题,本节内容主要是深入解析该思考题。思考题:能否把我们的编码和解码封装成独立的Handler呢?那么应该如何去封装...

Disruptor—3.核心源码实现分析二

大纲1.Disruptor的生产者源码分析2.Disruptor的消费者源码分析3.Disruptor的WaitStrategy等待策略分析4.Disruptor的高性能原因5.Disruptor高性...

线程的状态有哪些?它是如何工作的?

线程的状态有哪些?它是如何工作的?线程(Thread)是并发编程的基础,也是程序执行的最小单元,它依托进程而存在。一个进程中可以包含多个线程,多线程可以共享一块内存空间和一组系统资源,因此线程之间的切...

有图解有案例,我终于把Condition的原理讲透彻了

平时加解锁都是直接使用Synchronized关键字来实现的,简单好用,为啥还要引用ReentrantLock呢?为了解决小伙伴的疑问,我们来对两者做个简单的比较吧:相同点两者都是“可重入锁”,即当前...

白话DUBBO原理,通俗易记,再也不怕面试时讲不清楚了

现在的各种面试免不了要问些中间件,尤其是互联网公司,更注重获选人对中间件的掌握情况。在中间件中,有一大类是关于RPC框架的,Dubbo即是阿里出品的一款很著名的RPC中间件,很多互联网公司都在用,面试...

Java 最细的集合类总结(java常用的集合类有哪些)

数据结构作为每一个开发者不可回避的问题,而Java对于不同的数据结构提供了非常成熟的实现,这一个又一个实现既是面试中的难点,也是工作中必不可少的工具,在此,笔者经历漫长的剖析,将其抽丝剥茧的呈现出...

详解Java异常(Exception)处理及常见异常

很多事件并非总是按照人们自己设计意愿顺利发展的,经常出现这样那样的异常情况。例如:你计划周末郊游,计划从家里出发→到达目的→游泳→烧烤→回家。但天有不测风云,当你准备烧烤时候突然天降大雨,只能终止郊...

为什么阿里强制要求不要在foreach循环里进行元素remove和add操作

在阅读《阿里巴巴Java开发手册》时,发现有一条关于在foreach循环里进行元素的remove/add操作的规约,具体内容如下:错误演示我们首先在IDEA中编写一个在foreach循...

SpringBoot条件化配置(@Conditional)全面解析与实战指南

一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...