kornia,一个实用的 Python 库!(python kkb_tools)
liuian 2025-05-08 19:42 38 浏览
大家好,今天为大家分享一个实用的 Python 库 - kornia。
Github地址:https://github.com/kornia/kornia/
Kornia是一个基于PyTorch的开源计算机视觉库,由OpenCV团队成员Edgar Riba于2018年创建并开源。该库旨在填补深度学习与传统计算机视觉之间的鸿沟,提供可微分的计算机视觉算法,使得视觉操作可以无缝集成到深度学习流程中。Kornia的核心特性是所有操作都支持GPU加速并且可微分,意味着它们可以集成到端到端的深度学习模型中,并通过反向传播进行优化。
安装
Kornia的安装非常简单,可以通过pip包管理工具完成:
pip install kornia
对于使用conda环境的用户,可以通过以下命令安装:
conda install -c conda-forge kornia
安装完成后,可以通过以下代码验证安装是否成功:
import kornia
print(kornia.__version__)
如果能正确输出版本号(如"0.7.0"),说明安装成功。由于Kornia基于PyTorch,请确保已经安装了PyTorch库。
特性
- 可微分操作:所有操作都支持自动求导,可以集成到深度学习模型中
- GPU加速:所有函数都可以在CPU和GPU上运行,提供卓越的性能
- PyTorch兼容:与PyTorch生态系统完全兼容,使用相同的张量操作方式
- 图像增强:提供丰富的图像增强和变换功能
- 几何变换:支持各种几何变换操作,如旋转、缩放、透视变换等
- 深度估计:包含立体视觉和深度估计的算法
- 特征检测:提供经典的特征检测和描述算法的可微分实现
- 色彩空间转换:支持多种色彩空间之间的转换
- 与OpenCV兼容:API设计与OpenCV相似,方便用户迁移
基本功能
图像处理基础
Kornia提供了丰富的图像处理基础功能,包括滤波、边缘检测、形态学操作等。这些操作与传统的OpenCV函数类似,但都是可微分的,可以融入深度学习管道中。
以下示例展示了如何使用Kornia进行基本的图像处理操作,包括高斯模糊和边缘检测:
import cv2
import kornia as K
import kornia.filters as KF
import matplotlib.pyplot as plt
import numpy as np
# 1. 加载图像
img = cv2.imread('winequality.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # OpenCV是BGR格式,转为RGB
# 2. 转换为PyTorch张量并确保正确形状
img_tensor = K.image_to_tensor(img, keepdim=True).float() / 255.0 # [1,3,H,W]
print(f"转换后张量形状: {img_tensor.shape}")
# 3. 应用高斯模糊
try:
blurred = KF.gaussian_blur2d(
img_tensor,
kernel_size=(5, 5),
sigma=(1.5, 1.5)
)
except Exception as e:
# 如果仍然失败,手动调整维度
if img_tensor.dim() == 3:
img_tensor = img_tensor.unsqueeze(0) # [C,H,W] -> [1,C,H,W]
print(f"调整后形状: {img_tensor.shape}")
blurred = KF.gaussian_blur2d(
img_tensor,
kernel_size=(5, 5),
sigma=(1.5, 1.5)
)
# 4. Canny边缘检测
edges = KF.canny(img_tensor)[0] # 返回(edges, thin_edges)
# 5. 转换回NumPy用于显示
blurred_np = (blurred.squeeze().permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
edges_np = (edges.squeeze().cpu().numpy() * 255).astype(np.uint8) # Canny输出是单通道
# 6. 可视化
plt.figure(figsize=(15, 5))
plt.subplot(131)
plt.imshow(img)
plt.title('Original')
plt.axis('off')
plt.subplot(132)
plt.imshow(blurred_np)
plt.title('Gaussian Blur')
plt.axis('off')
plt.subplot(133)
plt.imshow(edges_np, cmap='gray')
plt.title('Canny Edges')
plt.axis('off')
plt.tight_layout()
plt.show()
输出结果:
转换后张量形状: torch.Size([3, 3000, 3000])
调整后形状: torch.Size([1, 3, 3000, 3000])
几何变换
几何变换是计算机视觉中的基本操作,Kornia提供了丰富的几何变换函数,如旋转、缩放、翻转和仿射变换等。这些变换函数不仅可以用于数据增强,还可以用于解决视角变换、图像配准等问题。
以下示例展示了如何使用Kornia的几何变换功能:
import kornia.geometry.transform as KGT
import matplotlib.pyplot as plt
import numpy as np
import torch
# 创建示例图像(模拟彩色图像)
def create_sample_image():
img = torch.zeros(3, 224, 224)
# 绘制红色十字
img[0, 100:120, :] = 1.0 # 红色横线
img[0, :, 100:120] = 1.0 # 红色竖线
# 添加绿色边框
img[1, :10, :] = 1.0
img[1, -10:, :] = 1.0
img[1, :, :10] = 1.0
img[1, :, -10:] = 1.0
return img.unsqueeze(0) # 添加batch维度 [1,3,224,224]
# 创建图像张量 [B, C, H, W]
img_tensor = create_sample_image()
# 1. 旋转图像
angle_degrees = torch.tensor([45.0]) # 旋转45度
rotated = KGT.rotate(img_tensor, angle_degrees)
# 2. 调整大小
resized = KGT.resize(img_tensor, (128, 128))
# 3. 垂直翻转
flipped = KGT.vflip(img_tensor)
# 4. 水平翻转
hflipped = KGT.hflip(img_tensor)
# 5. 仿射变换
M_affine = torch.tensor([[[0.8, -0.2, 30.0],
[0.1, 0.7, 20.0]]], dtype=torch.float32)
affine_trans = KGT.warp_affine(img_tensor, M_affine, dsize=(224, 224))
# 6. 透视变换
points_src = torch.tensor([[[0., 0], [223, 0], [223, 223], [0, 223]]], dtype=torch.float32) # 显式指定数据类型
points_dst = torch.tensor([[[50, 50], [200, 30], [180, 200], [30, 220]]], dtype=torch.float32) # 显式指定数据类型
M_perspective = KGT.get_perspective_transform(points_src, points_dst)
perspective = KGT.warp_perspective(img_tensor, M_perspective, dsize=(224, 224))
# 可视化函数
def plot_tensor(tensor, title, ax):
img = tensor.squeeze().permute(1, 2, 0).cpu().numpy()
ax.imshow(np.clip(img, 0, 1)) # 确保值在[0,1]范围内
ax.set_title(title, fontsize=10)
ax.axis('off')
# 创建可视化布局
fig, axes = plt.subplots(2, 4, figsize=(15, 8))
plt.suptitle('Kornia几何变换可视化', fontsize=16)
# 绘制所有变换
plot_tensor(img_tensor, "原始图像", axes[0, 0])
plot_tensor(rotated, "旋转45°", axes[0, 1])
plot_tensor(resized, "缩放128x128", axes[0, 2])
plot_tensor(flipped, "垂直翻转", axes[0, 3])
plot_tensor(hflipped, "水平翻转", axes[1, 0])
plot_tensor(affine_trans, "仿射变换", axes[1, 1])
plot_tensor(perspective, "透视变换", axes[1, 2])
# 隐藏最后一个空子图
axes[1, 3].axis('off')
plt.tight_layout()
plt.show()
输出结果:
高级功能
特征检测与匹配
Kornia实现了多种经典的特征检测和描述算法的可微分版本,如Harris角点、SIFT和ORB等。这些功能可用于图像匹配、全景拼接和视觉SLAM等应用。
以下示例展示了如何使用Kornia进行特征检测和匹配
import torch
import kornia as K
import kornia.feature as KF
from kornia.geometry.subpix import nms2d
# 加载两幅需要匹配的图像
img1 = torch.rand(1, 1, 512, 512) # 灰度图像
img2 = torch.rand(1, 1, 512, 512) # 灰度图像
# 检测Harris角点
harris = K.feature.CornerHarris(k=0.04)
corners = harris(img1)
# 提取角点
keypoints = nms2d(corners, kernel_size=(3, 3), mask_only=True)
# 使用SIFT检测和描述
sift = KF.SIFTFeature(num_features=128)
keypoints1, laf1, descriptors1 = sift(img1)
keypoints2, laf2, descriptors2 = sift(img2)
# 将描述符从 [1, N, 128] 转换为 [N, 128] 用于匹配
descriptors1 = descriptors1.squeeze(0) # Now shape [N, 128]
descriptors2 = descriptors2.squeeze(0) # Now shape [M, 128]
# 在两幅图像间进行特征匹配
matcher = KF.DescriptorMatcher('smnn')
matches = matcher(descriptors1, descriptors2)
图像增强与颜色处理
图像增强是提高图像质量和视觉效果的重要手段,而颜色处理则涉及到不同颜色空间之间的转换和操作。Kornia提供了丰富的工具来处理这些任务,支持各种颜色空间之间的转换、色彩调整、对比度增强等操作。
以下示例展示了如何使用Kornia进行图像增强和颜色处理:
import torch
import kornia as K
import kornia.color as KC
import kornia.enhance as KE
import matplotlib.pyplot as plt
# 加载RGB图像
img_rgb = torch.rand(1, 3, 256, 256) # [B, C, H, W]
# 颜色空间转换
img_hsv = KC.rgb_to_hsv(img_rgb)
img_lab = KC.rgb_to_lab(img_rgb)
img_gray = KC.rgb_to_grayscale(img_rgb)
# 图像增强
# 调整亮度
brightness_adjusted = KE.adjust_brightness(img_rgb, factor=1.2)
# 调整对比度
contrast_adjusted = KE.adjust_contrast(img_rgb, factor=1.5)
# 调整饱和度
saturated = KE.adjust_saturation(img_rgb, factor=1.5)
# 调整色调
hue_adjusted = KE.adjust_hue(img_rgb, factor=0.2)
# 自适应直方图均衡化 (CLAHE)
clahe = KE.equalize_clahe(img_gray, clip_limit=2.0, grid_size=(8, 8))
# 归一化图像
normalized = KE.normalize(img_rgb,
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225]))
# 可视化
def plot_image(img, title, cmap=None):
img = img.squeeze().cpu().numpy() # 移除批次维度并转换为 NumPy 数组
if cmap == 'gray':
plt.imshow(img, cmap=cmap) # 灰度图像直接显示
else:
img = img.transpose(1, 2, 0) # 对于 RGB 图像,调整通道顺序
plt.imshow(img)
plt.title(title)
plt.axis('off')
plt.show()
# 原始图像
plot_image(img_rgb, 'Original RGB Image')
# 颜色空间转换后的图像
plot_image(img_hsv, 'HSV Image')
plot_image(img_lab, 'LAB Image')
plot_image(img_gray, 'Grayscale Image', cmap='gray')
# 图像增强后的图像
plot_image(brightness_adjusted, 'Brightness Adjusted')
plot_image(contrast_adjusted, 'Contrast Adjusted')
plot_image(saturated, 'Saturation Adjusted')
plot_image(hue_adjusted, 'Hue Adjusted')
plot_image(clahe, 'CLAHE', cmap='gray')
# 归一化后的图像
plot_image(normalized, 'Normalized Image')
输出结果:
实际应用场景
深度学习中的数据增强
在训练深度学习模型时,数据增强是提高模型泛化能力的关键技术。Kornia提供的可微分图像变换使得数据增强可以集成到训练流程中,甚至可以作为网络的一部分进行优化。
下面的示例展示了如何使用Kornia在PyTorch训练流程中实现高效的数据增强:
import torch
import torch.nn as nn
import torch.optim as optim
import kornia.augmentation as KA
import matplotlib.pyplot as plt
# 定义数据增强流水线
aug_list = nn.Sequential(
KA.RandomHorizontalFlip(p=0.5),
KA.RandomRotation(degrees=10.0),
KA.RandomResizedCrop(size=(224, 224), scale=(0.8, 1.0), ratio=(0.75, 1.33)),
KA.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
KA.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225]))
)
# 定义简单的模型
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc = nn.Linear(224 * 224 * 3, 10) # 假设输入图像为 224x224x3,输出为 10 类
def forward(self, x):
x = x.view(x.size(0), -1) # 展平输入
return self.fc(x)
# 定义训练步骤
def train_step(model, images, labels, optimizer, criterion):
# 应用数据增强
images_aug = aug_list(images)
# 前向传播
outputs = model(images_aug)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
# 可视化增强后的图像
def plot_images(images, title):
images = images.permute(0, 2, 3, 1) # [B, H, W, C]
images = (images * torch.tensor([0.229, 0.224, 0.225]) + torch.tensor([0.485, 0.456, 0.406])).clip(0, 1) # 反归一化
images = images.cpu().numpy() # 转换为 NumPy 数组
plt.figure(figsize=(10, 10))
for i in range(min(4, images.shape[0])): # 最多显示 4 张图像
plt.subplot(2, 2, i + 1)
plt.imshow(images[i])
plt.axis('off')
plt.suptitle(title)
plt.show()
# 使用示例
if __name__ == "__main__":
# 模拟输入数据
images = torch.rand(4, 3, 256, 256) # [B, C, H, W]
labels = torch.randint(0, 10, (4,)) # 随机生成标签
# 初始化模型、优化器和损失函数
model = SimpleModel()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
# 可视化原始图像
plot_images(images, "Original Images")
# 可视化增强后的图像
images_aug = aug_list(images)
plot_images(images_aug, "Augmented Images")
# 训练步骤
loss = train_step(model, images, labels, optimizer, criterion)
print(f"Loss: {loss.item()}")
输出结果:
Loss: 2.1151206493377686
图像配准与拼接
图像配准是将不同视角或不同时间拍摄的图像对齐的过程,而图像拼接则是将多幅图像合成为一幅全景图像。Kornia提供的特征检测、匹配和几何变换功能可以有效支持这些应用。
以下示例展示了如何使用Kornia进行基本的图像配准和拼接:
import cv2
import torch
import kornia as K
import kornia.geometry as KG
import numpy as np
import matplotlib.pyplot as plt
def load_image(image_path):
# 使用 OpenCV 加载图像
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
img = torch.from_numpy(img).float() / 255.0 # 转换为 PyTorch 张量并归一化
img = img.unsqueeze(0).unsqueeze(0) # 添加批次和通道维度 [B, C, H, W]
return img
def image_registration(img1_path, img2_path):
# 加载图像
img1 = load_image(img1_path)
img2 = load_image(img2_path)
# 使用 OpenCV 检测 SIFT 特征
sift = cv2.SIFT_create()
kp1, desc1 = sift.detectAndCompute((img1.squeeze().numpy() * 255).astype(np.uint8), None)
kp2, desc2 = sift.detectAndCompute((img2.squeeze().numpy() * 255).astype(np.uint8), None)
# 特征匹配
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(desc1, desc2, k=2)
# 筛选好的匹配点(Lowe's ratio test)
good_matches = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
# 获取匹配点的坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 2)
# 计算仿射变换矩阵
H, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 将变换矩阵转换为 PyTorch 张量,并扩展为 [1, 3, 3]
H = torch.from_numpy(H).float().unsqueeze(0) # [1, 3, 3]
# 应用变换
warped_img = KG.warp_perspective(img1, H, dsize=img2.shape[-2:])
return warped_img, H
# 示例调用
warped_img, H = image_registration("winequality.png", "winequality0.png")
# 可视化结果
def plot_image(img, title):
img = img.squeeze().cpu().numpy() # 移除批次和通道维度并转换为 NumPy 数组
plt.imshow(img, cmap='gray')
plt.title(title)
plt.axis('off')
plt.show()
plot_image(warped_img, 'Warped Image')
输出结果:
总结
Kornia库为Python开发者提供了一种现代化的计算机视觉解决方案,它巧妙地将传统计算机视觉算法与深度学习技术相结合。作为一个完全可微分且支持GPU加速的库,Kornia特别适合需要将视觉处理集成到深度学习流程中的应用场景。从基本的图像处理和几何变换,到高级的特征检测和图像增强,Kornia涵盖了广泛的计算机视觉功能。与OpenCV相比,Kornia的主要优势在于其可微分性质和与PyTorch的无缝集成,使得端到端优化成为可能。
相关推荐
- Optional是个好东西,如果用错了就太可惜了
-
原文出处:https://xie.infoq.cn/article/e3d1f0f4f095397c44812a5be我们都知道,在Java8新增了一个类-Optional,主要是用来解决程...
- IDEA建议:不要在字段上使用@Autowire了!
-
在使用IDEA写Spring相关的项目的时候,在字段上使用@Autowired注解时,总是会有一个波浪线提示:Fieldinjectionisnotrecommended.纳尼?我天天用,咋...
- Spring源码|Spring实例Bean的方法
-
Spring实例Bean的方法,在AbstractAutowireCapableBeanFactory中的protectedBeanWrappercreateBeanInstance(String...
- Spring技巧:深入研究Java 14和SpringBoot
-
在本期文章中,我们将介绍Java14中的新特性及其在构建基于SpringBoot的应用程序中的应用。开始,我们需要使用Java的最新版本,也是最棒的版本,Java14,它现在还没有发布。预计将于2...
- Java开发200+个学习知识路线-史上最全(框架篇)
-
1.Spring框架深入SpringIOC容器:BeanFactory与ApplicationContextBean生命周期:实例化、属性填充、初始化、销毁依赖注入方式:构造器注入、Setter注...
- 年末将至,Java 开发者必须了解的 15 个Java 顶级开源项目
-
专注于Java领域优质技术,欢迎关注作者:SnailClimbStar的数量统计于2019-12-29。1.JavaGuideGuide哥大三开始维护的,目前算是纯Java类型项目中Sta...
- 字节跨平台框架 Lynx 开源:一个 Web 开发者的原生体验
-
最近各大厂都在开源自己的跨平台框架,前脚腾讯刚宣布计划四月开源基于Kotlin的跨平台框架「Kuikly」,后脚字节跳动旧开源了他们的跨平台框架「Lynx」,如果说Kuikly是一个面向...
- 我要狠狠的反驳“公司禁止使用Lombok”的观点
-
经常在其它各个地方在说公司禁止使用Lombok,我一直不明白为什么不让用,今天看到一篇文章列举了一下“缺点”,这里我只想狠狠地反驳,看到列举的理由我竟无言以对。原文如下:下面,结合我自己使用Lomb...
- SpringBoot Lombok使用详解:从入门到精通(注解最全)
-
一、Lombok概述与基础使用1.1Lombok是什么Lombok是一个Java库,它通过注解的方式自动生成Java代码(如getter、setter、toString等),从而减少样板代码的编写,...
- Java 8之后的那些新特性(六):记录类 Record Class
-
Java是一门面向对象的语言,而对于面向对象的语言中,一个众所周知的概念就是,对象是包含属性与行为的。比如HR系统中都会有雇员的概念,那雇员会有姓名,ID身份,性别等,这些我们称之为属性;而雇员同时肯...
- 为什么大厂要求安卓开发者掌握Kotlin和Jetpack?优雅草卓伊凡
-
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡一、Kotlin:Android开发的现代语言选择1.1Kotlin是什么?Kotlin是由...
- Kotlin这5招太绝了!码农秒变优雅艺术家!
-
Kotlin因其简洁性、空安全性和与Java的无缝互操作性而备受喜爱。虽然许多开发者熟悉协程、扩展函数和数据类等特性,但还有一些鲜为人知的特性可以让你的代码从仅仅能用变得真正优雅且异常简洁。让我们来看...
- 自行部署一款免费高颜值的IT资产管理系统-咖啡壶chemex
-
在运维时,ICT资产太多怎么办,还是用excel表格来管理?效率太低,也不好多人使用。在几个IT资产管理系统中选择比较中,最终在Snipe-IT和chemex间选择了chemex咖啡壶。Snip...
- PHP对接百度语音识别技术(php对接百度语音识别技术实验报告)
-
引言在目前的各种应用场景中,语音识别技术已经越来越常用,并且其应用场景正在不断扩大。百度提供的语音识别服务允许用户通过简单的接口调用,将语音内容转换为文本。本文将通过PHP语言集成百度的语音识别服务,...
- 知识付费系统功能全解析(知识付费项目怎么样)
-
开发知识付费系统需包含核心功能模块,确保内容变现、用户体验及运营管理需求。以下是完整功能架构:一、用户端功能注册登录:手机号/邮箱注册,第三方登录(微信、QQ)内容浏览:分类展示课程、文章、音频等付费...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)