百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控

liuian 2024-12-11 15:43 619 浏览

文 | 某某白米饭

来源:Python 技术「ID: pythonall」

psutil 是一个跨平台库(http://pythonhosted.org/psutil)能够获取到系统运行的进程和系统利用率(包括CPU、内存、磁盘、网络等)信息。主要用来做系统监控,性能分析,进程管理。支持 Linux、Mac OS、Windows 系统。

本文以 psutil 模块获取系统信息开发一个监控 Mac OS 系统的平台。

准备工作

技术选择

  • 监控的系统是 Mac OS 系统

  • 监控系统模块选择 psutil 模块

  • Web 框架选择的是 Flask 框架

  • 前端 UI 选择的是 Bootstrap UI

  • 动态可视化图表选择 Pyecharts 模块

安装 psutil

pip3 install psutil

安装 Flask、pyecharts、Bootstrap

  • Flask 的教程是在公众号文章:Web 开发 Flask 介绍

  • Pyecharts 的教程在公众号文章:Python 图表利器 pyecharts,按照官网 (http://pyecharts.org/#/zh-cn/web_flask) 文档整合 Flask 框架,并使用定时全量更新图表。

  • Bootstrap 是一个 前端的 Web UI,官网地址是 (https://v4.bootcss.com)

获取系统信息

CPU信息

通过 psutil 获取 CPU 信息

>>> import psutil
# 获取当前 CPU 的利用率>>> psutil.cpu_percent53.8
# 获取当前 CPU 的用户/系统/空闲时间>>> psutil.cpu_timesscputimes(user=197483.49, nice=0.0, system=114213.01, idle=1942295.68)
# 1/5/15 分钟之内的 CPU 负载>>> psutil.getloadavg(7.865234375, 5.1826171875, 4.37353515625)
# CPU 逻辑个数>>> psutil.cpu_count4
# CPU 物理个数>>> psutil.cpu_count(logical=False)2

在监控平台上每 2 秒请求 url 获取 CPU 负载,并动态显示图表

cpu_percent_dict = {}def cpu: # 当前时间 now = time.strftime('%H:%M:%S', time.localtime(time.time)) # CPU 负载 cpu_percent = psutil.cpu_percent cpu_percent_dict[now] = cpu_percent
# 保持在图表中 10 个数据 if len(cpu_percent_dict.keys) == 11: cpu_percent_dict.pop(list(cpu_percent_dict.keys)[0])
def cpu_line -> Line: cpu # 全量更新 pyecharts 图表 c = ( Line .add_xaxis(list(cpu_percent_dict.keys)) .add_yaxis('', list(cpu_percent_dict.values), areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .set_global_opts(title_opts=opts.TitleOpts(title = now + "CPU负载",pos_left = "center"), yaxis_opts=opts.AxisOpts(min_=0,max_=100,split_number=10,type_="value", name='%')) ) return c
@app.route("/cpu")def get_cpu_chart: c = cpu_line return c.dump_options_with_quotes

示例结果

内存

通过 psutil 获取内存和交换区信息

# 系统内存信息 总内存/立刻可用给进程使用的内存/内存负载/已使用内存/空闲内存/当前正在使用或者最近使用的内存/未使用的内存/永久在内存>>> psutil.virtual_memorysvmem(total=8589934592, available=2610610176, percent=69.6, used=4251074560, free=387874816, active=2219110400, inactive=2069094400, wired=2031964160)
# 交换区内存 总内存/使用的内存/空闲的内存/负载/系统从磁盘交换进来的字节数(累计)/系统从磁盘中交换的字节数(累积)>>> psutil.swap_memorysswap(total=2147483648, used=834404352, free=1313079296, percent=38.9, sin=328911147008, sout=3249750016)

在监控平台上每 2 秒请求 url 获取内存负载,并动态显示图表

def memory: memory = psutil.virtual_memory swap = psutil.swap_memory # 在 Mac OS 上 未使用内存 = 总内存 - (空闲内存 + 未使用内存) return memory.total, memory.total - (memory.free + memory.inactive), memory.free + memory.inactive, swap.total, swap.used, swap.free, memory.percent

def memory_liquid -> Gauge: mtotal, mused, mfree, stotal, sused, sfree, mpercent = memory c = ( Gauge .add("", [("", mpercent)]) .set_global_opts(title_opts=opts.TitleOpts(title="内存负载", pos_left = "center")) ) return mtotal, mused, mfree, stotal, sused, sfree, c
@app.route("/memory")def get_memory_chart: mtotal, mused, mfree, stotal, sused, sfree, c = memory_liquid return jsonify({'mtotal': mtotal, 'mused': mused, 'mfree': mfree, 'stotal': stotal, 'sused': sused, 'sfree': sfree, 'liquid': c.dump_options_with_quotes})

示例结果

磁盘

通过 psutil 获取磁盘大小、分区、使用率和磁盘IO

# 磁盘分区情况>>> psutil.disk_partitions[sdiskpart(device='/dev/disk1s5', mountpoint='/', fstype='apfs', opts='ro,local,rootfs,dovolfs,journaled,multilabel'), sdiskpart(device='/dev/disk1s1', mountpoint='/System/Volumes/Data', fstype='apfs', opts='rw,local,dovolfs,dontbrowse,journaled,multilabel'), sdiskpart(device='/dev/disk1s4', mountpoint='/private/var/vm', fstype='apfs', opts='rw,local,dovolfs,dontbrowse,journaled,multilabel'), sdiskpart(device='/dev/disk1s3', mountpoint='/Volumes/Recovery', fstype='apfs', opts='rw,local,dovolfs,dontbrowse,journaled,multilabel')]
# 磁盘的使用情况 磁盘总大小/已使用大小/空闲大小/负载>>> psutil.disk_usage('/')sdiskusage(total=250790436864, used=10872418304, free=39636717568, percent=21.5)
# 磁盘IO 读取次数/写入次数/读取数据/写入数据/磁盘读取所花费的时间/写入磁盘所花费的时间>>> psutil.disk_io_counterssdiskio(read_count=26404943, write_count=11097500, read_bytes=609467826688, write_bytes=464322912256, read_time=7030486, write_time=2681553)

在监控平台上每 2 秒请求 url 获取磁盘信息,并动态显示图表

disk_dict = {'disk_time':, 'write_bytes': , 'read_bytes': , 'pre_write_bytes': 0, 'pre_read_bytes': 0, 'len': -1}def disk: disk_usage = psutil.disk_usage('/') disk_used = 0 # 磁盘已使用大小 = 每个分区的总和 partitions = psutil.disk_partitions for partition in partitions: partition_disk_usage = psutil.disk_usage(partition[1]) disk_used = partition_disk_usage.used + disk_used
now = time.strftime('%H:%M:%S', time.localtime(time.time)) count = psutil.disk_io_counters read_bytes = count.read_bytes write_bytes = count.write_bytes # 第一次请求 if disk_dict['len'] == -1: disk_dict['pre_write_bytes'] = write_bytes disk_dict['pre_read_bytes'] = read_bytes disk_dict['len'] = 0 return disk_usage.total, disk_used, disk_usage.free # 当前速率=现在写入/读取的总字节-前一次请求写入/读取的总字节 disk_dict['write_bytes'].append((write_bytes - disk_dict['pre_write_bytes'])/1024) disk_dict['read_bytes'].append((read_bytes - disk_dict['pre_read_bytes'])/ 1024) disk_dict['disk_time'].append(now) disk_dict['len'] = disk_dict['len'] + 1 # 把现在写入/读取的总字节放入前一个请求的变量中 disk_dict['pre_write_bytes'] = write_bytes disk_dict['pre_read_bytes'] = read_bytes # 保持在图表中 50 个数据 if disk_dict['len'] == 51: disk_dict['write_bytes'].pop(0) disk_dict['read_bytes'].pop(0) disk_dict['disk_time'].pop(0) disk_dict['len'] = disk_dict['len'] - 1
return disk_usage.total, disk_used, disk_usage.free

def disk_line -> Line: total, used, free = disk c = ( Line(init_opts=opts.InitOpts(width="1680px", height="800px")) .add_xaxis(xaxis_data=disk_dict['disk_time']) .add_yaxis( series_name="写入数据", y_axis=disk_dict['write_bytes'], areastyle_opts=opts.AreaStyleOpts(opacity=0.5), linestyle_opts=opts.LineStyleOpts, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="读取数据", y_axis=disk_dict['read_bytes'], yaxis_index=1, areastyle_opts=opts.AreaStyleOpts(opacity=0.5), linestyle_opts=opts.LineStyleOpts, label_opts=opts.LabelOpts(is_show=False), ) .extend_axis( yaxis=opts.AxisOpts( name_location="start", type_="value", is_inverse=True, axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), name='KB/2S' ) ) .set_global_opts( title_opts=opts.TitleOpts( title="磁盘IO", pos_left="center", pos_top="top", ), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), legend_opts=opts.LegendOpts(pos_left="left"), xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False), yaxis_opts=opts.AxisOpts( type_="value", name='KB/2S'), ) .set_series_opts( axisline_opts=opts.AxisLineOpts, ) )
return total, used, free, c
@app.route("/disk")def get_disk_chart: total, used, free, c = disk_line return jsonify({'total': total, 'used': used, 'free': free, 'line': c.dump_options_with_quotes})

示例结果

网卡

通过 psutil 获取网络接口和网络连接的信息

# 获取网络字节数和包的个数 发送的字节数/收到的字节数/发送的包数/收到的包数>>> psutil.net_io_counterssnetio(bytes_sent=9257984, bytes_recv=231398400, packets_sent=93319, packets_recv=189501, errin=0, errout=0, dropin=0, dropout=0)
# 获取当前的网络连接 注意:net_connections 需要用管理员权限运行 Python 文件>>> psutil.net_connections[sconn(fd=6, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_STREAM: 1>, laddr=addr(ip='192.168.5.31', port=50541), raddr=addr(ip='17.248.159.145', port=443), status='ESTABLISHED', pid=1897), sconn(fd=12, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_STREAM: 1>, laddr=addr(ip='192.168.5.31', port=50543), raddr=addr(ip='17.250.120.9', port=443), status='ESTABLISHED', pid=1897), sconn(fd=6, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_DGRAM: 2>, laddr=addr(ip='0.0.0.0', port=0), raddr=(), status='NONE', pid=1790),sconn(fd=10, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_DGRAM: 2>, laddr=addr(ip='0.0.0.0', port=0), raddr=(), status='NONE', pid=1790),sconn(fd=11, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_DGRAM: 2>, laddr=addr(ip='0.0.0.0', port=0), raddr=(), status='NONE', pid=1790),...sconn(fd=30, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_DGRAM: 2>, laddr=addr(ip='0.0.0.0', port=137), raddr=(), status='NONE', pid=1),sconn(fd=31, family=<AddressFamily.AF_INET: 2>, type=<SocketKind.SOCK_DGRAM: 2>, laddr=addr(ip='0.0.0.0', port=138), raddr=(), status='NONE', pid=1)]
# 获取网络接口信息>>> psutil.net_if_addrs{'lo0': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', netmask='255.0.0.0', broadcast=None, ptp=None), snicaddr(family=<AddressFamily.AF_INET6: 30>, address='::1', netmask='ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None), snicaddr(family=<AddressFamily.AF_INET6: 30>, address='fe80::1%lo0', netmask='ffff:ffff:ffff:ffff::', broadcast=None, ptp=None)], ..., 'utun1': [snicaddr(family=<AddressFamily.AF_INET6: 30>, address='fe80::b519:e5df:2bd4:857e%utun1', netmask='ffff:ffff:ffff:ffff::', broadcast=None, ptp=None)]}
# 获取网络接口的状态>>> psutil.net_if_stats{'lo0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=16384), ...'utun1': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=2000)}

在监控平台上每 2 秒请求 url 获取网卡IO,并动态显示图表

net_io_dict = {'net_io_time':, 'net_io_sent': , 'net_io_recv': , 'pre_sent': 0, 'pre_recv': 0, 'len': -1}def net_io: now = time.strftime('%H:%M:%S', time.localtime(time.time)) # 获取网络信息 count = psutil.net_io_counters g_sent = count.bytes_sent g_recv = count.bytes_recv
# 第一次请求 if net_io_dict['len'] == -1: net_io_dict['pre_sent'] = g_sent net_io_dict['pre_recv'] = g_recv net_io_dict['len'] = 0 return
# 当前网络发送/接收的字节速率 = 现在网络发送/接收的总字节 - 前一次请求网络发送/接收的总字节 net_io_dict['net_io_sent'].append(g_sent - net_io_dict['pre_sent']) net_io_dict['net_io_recv'].append(g_recv - net_io_dict['pre_recv']) net_io_dict['net_io_time'].append(now) net_io_dict['len'] = net_io_dict['len'] + 1
net_io_dict['pre_sent'] = g_sent net_io_dict['pre_recv'] = g_recv
# 保持在图表中 10 个数据 if net_io_dict['len'] == 11: net_io_dict['net_io_sent'].pop(0) net_io_dict['net_io_recv'].pop(0) net_io_dict['net_io_time'].pop(0) net_io_dict['len'] = net_io_dict['len'] - 1

def net_io_line -> Line: net_io
c = ( Line .add_xaxis(net_io_dict['net_io_time']) .add_yaxis("发送字节数", net_io_dict['net_io_sent'], is_smooth=True) .add_yaxis("接收字节数", net_io_dict['net_io_recv'], is_smooth=True) .set_series_opts( areastyle_opts=opts.AreaStyleOpts(opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts( title_opts=opts.TitleOpts(title="网卡IO/2秒"), xaxis_opts=opts.AxisOpts( axistick_opts=opts.AxisTickOpts(is_align_with_label=True), is_scale=False, boundary_gap=False, ), )) return c
@app.route("/netio")def get_net_io_chart: c = net_io_line return c.dump_options_with_quotes

示例结果

进程

通过 psutil 可以获取所有进程的信息

# 所有进程的 pid>>> psutil.pids[0, 1, 134, 135, 138, 139, 140, 141, 144, 145, 147, 152, ..., 30400, 97792]
# 单个进程>>> p = psutil.Process(30400)
# 名称>>> p.name'pycharm'
# 使用内存负载>>> p.memory_percent12.838459014892578
# 启动时间>>> p.create_time1587029962.493182
# 路径>>> p.exe'/Applications/PyCharm.app/Contents/MacOS/pycharm'
# 状态>>> p.status'running'
# 用户名>>> p.username'imeng'
# 内存信息>>> p.memory_infopmem(rss=1093005312, vms=9914318848, pfaults=7813313, pageins=8448)

列出所有不需要权限的进程

def process: result =  process_list =  pid = psutil.pids for k, i in enumerate(pid): try: proc = psutil.Process(i) ctime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(proc.create_time)) process_list.append((str(i), proc.name, proc.cpu_percent, proc.memory_percent, ctime)) except psutil.AccessDenied: # 需要管理员权限 pass except psutil.NoSuchProcess: pass except SystemError: pass # 按负载排序 process_list.sort(key=process_sort, reverse=True)
for i in process_list: result.append({'PID': i[0], 'name': i[1], 'cpu': i[2], 'mem': "%.2f%%"%i[3], 'ctime': i[4]})
return jsonify({'list', result})
def process_sort(elem): return elem[3]
@app.route("/process")def get_process_tab: c = process return c
@app.route("/delprocess")def del_process: pid = request.args.get("pid") os.kill(int(pid), signal.SIGKILL) return jsonify({'status': 'OK'})

示例结果

process.gif

总结

本文以 Psutil + Flask + Pyecharts + Bootstrap 开发一个简单的系统监控平台,可以算做是本公众号内容的一个学以致用。在 Psutil 还有许多方法文章没有列举感兴趣的小伙伴可以去尝试并使用。

PS:公号内回复 :Python,即可进入Python 新手学习交流群,一起100天计划!

老规矩,兄弟们还记得么,,如果感觉文章内容不错的话,记得分享朋友圈让更多的人知道!

【代码获取方式

相关推荐

教你把多个视频合并成一个视频的方法

一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...

零代码编程:用kimichat合并一个文件夹下的多个文件

一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...

Java APT_java APT 生成代码

JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...

Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器

在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...

挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?

如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...

五年后,谷歌还在全力以赴发展 Kotlin

作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...

kotlin和java开发哪个好,优缺点对比

Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...

移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?

掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...

颜值非常高的XShell替代工具Termora,不一样的使用体验!

Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...

预处理的底层原理和预处理编译运行异常的解决方案

若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...

为“架构”再建个模:如何用代码描述软件架构?

在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...

深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型

2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...

比分网开发技术栈与功能详解_比分网有哪些

一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...

设计模式之-生成器_一键生成设计

一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...

构建第一个 Kotlin Android 应用_kotlin简介

第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...