PyTorch 深度学习实战(一):从零开始搭建神经网络(练习题解)
liuian 2025-05-08 19:41 5 浏览
1. 手写线性回归:
使用 PyTorch 实现房价预测
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# 加载加州房价数据集
data = fetch_california_housing()
X, y = data.data, data.target
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 转换为PyTorch张量
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).reshape(-1, 1)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).reshape(-1, 1)
# 定义神经网络模型
class HousePricePredictor(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1)
)
def forward(self, x):
return self.layers(x)
# 初始化模型、损失函数和优化器
model = HousePricePredictor(input_dim=X_train.shape[1])
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# 训练过程
def train_model(model, X_train, y_train, epochs=100, batch_size=32):
loss_history = []
for epoch in range(epochs):
# 前向传播
outputs = model(X_train)
loss = criterion(outputs, y_train)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_history.append(loss.item())
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss:.4f}')
return loss_history
# 训练模型
loss_history = train_model(model, X_train, y_train, epochs=100, batch_size=32)
# 绘制损失曲线
plt.plot(loss_history)
plt.title('Training Loss')
plt.xlabel('Epochs')
plt.ylabel('MSE Loss')
plt.show()
# 测试模型
model.eval()
with torch.no_grad():
test_predictions = model(X_test)
test_loss = criterion(test_predictions, y_test)
r2_score = 1 - ((y_test - test_predictions)**2).sum() / ((y_test - y_test.mean())**2).sum()
print(f'\nTest Loss: {test_loss:.4f}')
print(f'R^2 Score: {r2_score:.2f}')
# 可视化预测结果
plt.scatter(y_test, test_predictions)
plt.title('Actual vs Predicted Prices')
plt.xlabel('Actual Price')
plt.ylabel('Predicted Price')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--') # 参考线
plt.show()
代码说明:
- 数据准备:
- 使用加州房价数据集(包含2064个样本和8个特征)
- 数据标准化处理
- 划分训练集(80%)和测试集(20%)
- 模型构建:
- 使用3层全连接网络(128→64→32个隐藏单元)
- ReLU激活函数
- 输出层使用线性激活函数
- 训练过程:
- 均方误差(MSE)作为损失函数
- Adam优化器
- 训练100个epoch,batch size 32
- 每个epoch输出当前损失值
- 结果评估:
- 测试集上的MSE损失
- R^2决定系数
- 实际值 vs 预测值的散点图
- 包含参考线(理想情况下预测值应沿45度线分布)
注意事项:
- 可以通过调整input_dim参数适应不同的特征数量
- 超参数调优建议:尝试不同的学习率(0.01, 0.001等)调整隐藏层结构和神经元数量增加训练轮数(最多200-300)
- 可添加早停法(Early Stopping)防止过拟合
- 可使用交叉验证改进模型泛化能力
运行结果示例:
Epoch 1/100, Loss: 13.4865
...
Epoch 100/100, Loss: 0.1234
Test Loss: 0.1567
R^2 Score: 0.87
实际值 vs 预测值的散点图显示良好拟合趋势
2. 张量变换挑战:
import torch
a = torch.tensor([1, 2, 3])
a = a.unsqueeze(1).expand(-1, 3)
print(a)
输出结果:
tensor([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
步骤解析:
- **unsqueeze(1)**:在索引为1的位置插入新轴,形状变为 (3, 1),数据分布为 [[1], [2], [3]]。
- **expand(-1, 3)**:将第2个维度从1扩展至3,相当于复制每行元素3次,最终得到 3×3 矩阵。
3. 自定义数据集:
创建包含 CIFAR-10 图像和标签的 Dataset,实现数据加载和预处理。
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义标准化预处理(均值和标准差为CIFAR-10官方统计值)
transform = transforms.Compose([
transforms.ToTensor(), # 将图像转换为PyTorch张量(形状从(H,W,C)→(C,H,W))
transforms.Normalize( # 归一化像素值到[-1, 1]区间
mean=(0.4914, 0.4822, 0.4465), # RGB通道均值
std=(0.2023, 0.1994, 0.2010) # RGB通道标准差
)
])
# 加载训练集(自动下载数据到./data目录)
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True, # 若数据未下载则自动下载
transform=transform
)
# 加载测试集
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
download=True,
transform=transform
)
# 创建数据加载器(批量加载+打乱顺序)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
关键步骤解析:
(1).标准化预处理:
- ToTensor():将图像像素值从 [0, 255] 转换为 [0, 1]
- Normalize():使用CIFAR-10官方统计的均值和标准差进行归一化,加速模型收敛
(2).数据集加载:
- root='./data':指定数据存储路径(默认会在当前目录下创建data子目录)
- train=True:加载训练集(包含50,000张图像)
- download=True:首次运行时自动下载数据集(约175MB)
(3).数据加载器:
- batch_size=64:每批次加载64张图像
- shuffle=True:训练时打乱数据顺序防止过拟合
输出示例:
通过迭代器查看数据格式:
for images, labels in train_loader:
print(f"图像形状: {images.shape}") # torch.Size([64, 3, 32, 32])
print(f"标签范围: {labels.min()}, {labels.max()}") # 0 到 9
break
相关推荐
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
-
引言在现代应用程序中,数据的存储和处理变得愈发复杂多样。MySQL8.0引入了丰富的JSON相关函数,为我们提供了更灵活的数据存储和检索方式。本文将深入探讨MySQL8.0中的JSON...
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
-
前言虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使...
- MySQL的json查询之json_array(mysql json_search)
-
json_array顾名思义就是创建一个数组,实际的用法,我目前没有想到很好的使用场景。使用官方的例子说明一下吧。例一selectjson_array(1,2,3,4);json_array虽然单独...
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
-
#头条创作挑战赛#一、LSTM原理长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度...
- TensorBoard最全使用教程:看这篇就够了
-
机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍TensorFlow的开源工具套件,称为TensorBoard,虽然他是TensorFlow...
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
-
本文约4600字,建议阅读10分钟本文介绍了图神经网络版本的对比。KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Ar...
- kornia,一个实用的 Python 库!(python kkb_tools)
-
大家好,今天为大家分享一个实用的Python库-kornia。Github地址:https://github.com/kornia/kornia/Kornia是一个基于PyTorch的开源计算...
- 图像分割掩码标注转YOLO多边形标注
-
Ultralytics团队付出了巨大的努力,使创建自定义YOLO模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练yolo分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的...
- [python] 向量检索库Faiss使用指北
-
Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完...
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
-
并行运行70B大模型我们已经看到,量化已经成为在低端GPU(比如Colab、Kaggle等)上加载大型语言模型(LLMs)的最常见方法了,但这会降低准确性并增加幻觉现象。那如果你和你的朋友们...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- 人工智能——图像识别(人工智能图像识别流程)
-
概述图像识别(ImageRecognition)是计算机视觉的核心任务之一,旨在通过算法让计算机理解图像内容,包括分类(识别物体类别)、检测(定位并识别多个物体)、分割(像素级识别)等,常见的应用场...
- PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法
-
在上一篇文章中,我们介绍了DeepDeterministicPolicyGradient(DDPG)算法,并使用它解决了Pendulum问题。本文将深入探讨TwinDelayed...
- 大模型中常用的注意力机制GQA详解以及Pytorch代码实现
-
分组查询注意力(GroupedQueryAttention)是一种在大型语言模型中的多查询注意力(MQA)和多头注意力(MHA)之间进行插值的方法,它的目标是在保持MQA速度的同时...
- pytorch如何快速创建具有特殊意思的tensor张量?
-
专栏推荐正文我们通过值可以看到torch.empty并没有进行初始化创建tensor并进行随机初始化操作,常用rand/rand_like,randint正态分布(0,1)指定正态分布的均值还有方差i...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
-
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
- MySQL的json查询之json_array(mysql json_search)
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
- TensorBoard最全使用教程:看这篇就够了
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
- kornia,一个实用的 Python 库!(python kkb_tools)
- 图像分割掩码标注转YOLO多边形标注
- [python] 向量检索库Faiss使用指北
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)