PyTorch 深度学习实战(一):从零开始搭建神经网络(练习题解)
liuian 2025-05-08 19:41 76 浏览
1. 手写线性回归:
使用 PyTorch 实现房价预测
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# 加载加州房价数据集
data = fetch_california_housing()
X, y = data.data, data.target
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 转换为PyTorch张量
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).reshape(-1, 1)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).reshape(-1, 1)
# 定义神经网络模型
class HousePricePredictor(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1)
)
def forward(self, x):
return self.layers(x)
# 初始化模型、损失函数和优化器
model = HousePricePredictor(input_dim=X_train.shape[1])
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# 训练过程
def train_model(model, X_train, y_train, epochs=100, batch_size=32):
loss_history = []
for epoch in range(epochs):
# 前向传播
outputs = model(X_train)
loss = criterion(outputs, y_train)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_history.append(loss.item())
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss:.4f}')
return loss_history
# 训练模型
loss_history = train_model(model, X_train, y_train, epochs=100, batch_size=32)
# 绘制损失曲线
plt.plot(loss_history)
plt.title('Training Loss')
plt.xlabel('Epochs')
plt.ylabel('MSE Loss')
plt.show()
# 测试模型
model.eval()
with torch.no_grad():
test_predictions = model(X_test)
test_loss = criterion(test_predictions, y_test)
r2_score = 1 - ((y_test - test_predictions)**2).sum() / ((y_test - y_test.mean())**2).sum()
print(f'\nTest Loss: {test_loss:.4f}')
print(f'R^2 Score: {r2_score:.2f}')
# 可视化预测结果
plt.scatter(y_test, test_predictions)
plt.title('Actual vs Predicted Prices')
plt.xlabel('Actual Price')
plt.ylabel('Predicted Price')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--') # 参考线
plt.show()代码说明:
- 数据准备:
- 使用加州房价数据集(包含2064个样本和8个特征)
- 数据标准化处理
- 划分训练集(80%)和测试集(20%)
- 模型构建:
- 使用3层全连接网络(128→64→32个隐藏单元)
- ReLU激活函数
- 输出层使用线性激活函数
- 训练过程:
- 均方误差(MSE)作为损失函数
- Adam优化器
- 训练100个epoch,batch size 32
- 每个epoch输出当前损失值
- 结果评估:
- 测试集上的MSE损失
- R^2决定系数
- 实际值 vs 预测值的散点图
- 包含参考线(理想情况下预测值应沿45度线分布)
注意事项:
- 可以通过调整input_dim参数适应不同的特征数量
- 超参数调优建议:尝试不同的学习率(0.01, 0.001等)调整隐藏层结构和神经元数量增加训练轮数(最多200-300)
- 可添加早停法(Early Stopping)防止过拟合
- 可使用交叉验证改进模型泛化能力
运行结果示例:
Epoch 1/100, Loss: 13.4865
...
Epoch 100/100, Loss: 0.1234
Test Loss: 0.1567
R^2 Score: 0.87
实际值 vs 预测值的散点图显示良好拟合趋势2. 张量变换挑战:
import torch
a = torch.tensor([1, 2, 3])
a = a.unsqueeze(1).expand(-1, 3)
print(a)输出结果:
tensor([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])步骤解析:
- **unsqueeze(1)**:在索引为1的位置插入新轴,形状变为 (3, 1),数据分布为 [[1], [2], [3]]。
- **expand(-1, 3)**:将第2个维度从1扩展至3,相当于复制每行元素3次,最终得到 3×3 矩阵。
3. 自定义数据集:
创建包含 CIFAR-10 图像和标签的 Dataset,实现数据加载和预处理。
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义标准化预处理(均值和标准差为CIFAR-10官方统计值)
transform = transforms.Compose([
transforms.ToTensor(), # 将图像转换为PyTorch张量(形状从(H,W,C)→(C,H,W))
transforms.Normalize( # 归一化像素值到[-1, 1]区间
mean=(0.4914, 0.4822, 0.4465), # RGB通道均值
std=(0.2023, 0.1994, 0.2010) # RGB通道标准差
)
])
# 加载训练集(自动下载数据到./data目录)
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True, # 若数据未下载则自动下载
transform=transform
)
# 加载测试集
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
download=True,
transform=transform
)
# 创建数据加载器(批量加载+打乱顺序)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)关键步骤解析:
(1).标准化预处理:
- ToTensor():将图像像素值从 [0, 255] 转换为 [0, 1]
- Normalize():使用CIFAR-10官方统计的均值和标准差进行归一化,加速模型收敛
(2).数据集加载:
- root='./data':指定数据存储路径(默认会在当前目录下创建data子目录)
- train=True:加载训练集(包含50,000张图像)
- download=True:首次运行时自动下载数据集(约175MB)
(3).数据加载器:
- batch_size=64:每批次加载64张图像
- shuffle=True:训练时打乱数据顺序防止过拟合
输出示例:
通过迭代器查看数据格式:
for images, labels in train_loader:
print(f"图像形状: {images.shape}") # torch.Size([64, 3, 32, 32])
print(f"标签范围: {labels.min()}, {labels.max()}") # 0 到 9
break相关推荐
- psd格式怎么编辑(psd格式怎么修改图片)
-
PSD格式的图像,可以使用Photoshop来打开。 PSD--PhotoshopDocument(PSD),是著名的Adobe公司的图像处理软件Photoshop的专用格式。这种格式可以存储P...
- xp系统恢复出厂设置步骤图解
-
电脑xp系统一键还原具体操作方法如下:1.在电脑里打开一键GHOST程序2.会看到有以前备份过的系统文件信息,默认选项是(一键恢复系统)项,点击(恢复)。3.点击(恢复)后弹出对话框,提示恢复系统必须...
- 联想哪款笔记本电脑最好(联想笔记本那个款好)
-
联想笔记本电脑有4个系列,分别是:1、昭阳笔记本电脑针对行业客户设计的高品质笔记本电脑。高端、高性能的同时具备多重可信赖的安全保护方案。昭阳系列针对行业客户提供按需定制服务。2、旭日笔记本电脑联想旭日...
- 测速网速在线测试(在线测速网络速度)
-
是指通过特定的软件或网站,对用户的网络连接速度进行测试和评估。这种测试通常包括上传速度、下载速度、延迟时间等指标,帮助用户了解自己网络连接的性能和稳定性。常见的网速在线测试网站或软件有Speedtes...
- win7旗舰精简版(win7精简版系统怎么样)
-
Windows7SP1旗舰版64位超级极度精简封装版,属于深度精简(1G ESD版),基于Windows7SP1旗舰版进行精简优化封装,集成最新安全补丁,特别适合高主频单核、低主频...
- 笔记本电脑分辨率怎么调(笔记本电脑分辨率怎么调最佳win10)
-
调整方法如下第1步:使用快捷键【win+i】打开系统设置,也可以点击左下角的开始菜单栏,点击【设置】进入。进入系统设置后,点击【系统】,进入详细设置界面。第2步:点击左侧选项栏中的【屏幕】,在右侧找到...
- 显卡驱动坏了怎么修复(显卡驱动失效 哪里出问题)
-
1.在此电脑右击,选择管理,进入管理设备;2.在管理设备窗口选择设备管理器,进入找到显示适配器,点击显示适配器前面的>符号或者双击展开子选项;3.在显卡子选项中选择你的显卡,右击选择属...
- 苹果一体机双系统怎么切换(苹果一体机双系统怎么切换按哪个键)
-
苹果一体机双系统切换方法如下:1.在苹果电脑的桌面中点击左上角的苹果图标,等待弹出序列栏。2.在弹出的下拉选项中点击系统偏好设置进入,等待跳转页面。3.跳转页面之后,在系统偏好设置的页面中点击启动磁盘...
- 2025爱奇艺vip激活码(爱奇艺会员官方激活码)
-
2022爱奇艺腾讯优酷会员,要根据具体的需求来选择。喜欢青春偶像剧类型的可以选择爱奇艺视频;喜欢一些自制综艺和自制剧的优酷视频会员是不错的选择;腾讯视频定位就是主打大IP剧和一些热门综艺的转播,一...
- ie浏览器手机版官网下载(ie游览器手机版下载)
-
如果您在使用IE浏览器时遇到无法下载的问题,以下是一些常见的解决办法:1.清除浏览器缓存:打开IE浏览器,依次点击工具(齿轮图标)->Internet选项->常规选项->...
- office2003属于什么软件(word2003属于什么软件)
-
是一套Office2003专业版的精简版,包含常用的Word、Excel、PowerPoint三个应用,使用者甚多。楼主如果有需要,请上电脑在本帖下载我的附件。我见过最多的,是2013或者以上的(因为...
- 电脑鼠标设置在哪里调(电脑鼠标在哪里去调)
-
电脑点击开始,在菜单中找到“控制面板”,点击“控制面板”进入,找到“鼠标”点击进入在打开的窗口中选择“指针”,选择指针样式,可点击浏览,找到文件夹下,查看哪些指针可选择。可按路径把喜欢的图标放进去找到...
- ie浏览器怎么下载到电脑桌面
-
工具/材料:电脑1、首先在电脑桌面里找到这台电脑,双击将它打开。2、打开之后,在里面找到吸C盘,双击将它打开。3、然后在C盘里面找到Programfiles这个文件,将此文件打开。4、打开之后,在里...
- 主板bios没有csm选项(主板没有csm怎么办)
-
对普通用户最大的区别是,符合标准的bootloader必须为UEFI保证二进制兼容。结果:32位UEFI固件只能启动32位操作系统。64位UEFI固件只能启动64位操作系统。由于历史因素、OEM政策,...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
