Tensor:Pytorch神经网络界的Numpy
liuian 2025-05-08 19:41 1 浏览
Tensor
Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。
但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。
对于Tensor,从接口划分,我们大致可分为2类:
1.torch.function:如torch.sum、torch.add等。2.tensor.function:如tensor.view、tensor.add等。
而从是否修改自身来划分,会分为如下2类:
1.不修改自身数据,如x.add(y),x的数据不变,返回一个新的Tensor。2.修改自身数据,如x.add_(y),运算结果存在x中,x被修改。
简单的理解就是方法名带不带下划线的问题。
现在,我们来实现2个数组对应位置相加,看看其效果就近如何:
import torch
x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
print(x + y)
print(x.add(y))
print(x)
print(x.add_(y))
print(x)
运行之后,效果如下:
下面,我们来正式讲解Tensor的使用方式。
创建Tensor
与Numpy一样,创建Tensor也有很多的方法,可以自身的函数进行生成,也可以通过列表或者ndarray进行转换,同样也可以指定维度等。具体方法如下表(数组即张量):
函数 | 意义 |
Tensor(*size) | 直接从参数构造,支持list,Numpy数组 |
eye(row,column) | 创建指定行列的二维Tensor |
linspace(start,end,steps) | 从start到end,均匀切分成steps份 |
logspace(start,end,steps) | 从10^start到10^and,均分成steps份 |
rand/randn(*size) | 生成[0,1)均匀分布/标准正态分布的数据 |
ones(*size) | 生成指定shape全为1的张量 |
zeros(*size) | 生成指定shape全为0的张量 |
ones_like(t) | 返回与t的shape相同的张量,且元素全为1 |
zeros_like(t) | 返回与t的shape相同的张量,且元素全为0 |
arange(start,end,step) | 在区间[start,end)上,以间隔step生成一个序列张量 |
from_Numpy(ndarray) | 从ndarray创建一个Tensor |
这里需要注意Tensor有大写的方法也有小写的方法,具体效果我们先来看看代码:
import torch
t1 = torch.tensor(1)
t2 = torch.Tensor(1)
print("值{0},类型{1}".format(t1, t1.type()))
print("值{0},类型{1}".format(t2, t2.type()))
运行之后,效果如下:
可以看到,tensor与Tensor生成的值的类型就不同,而且t2(Tensor)返回一个大小为1的张量,而t1(tensor)返回的就是1这个值。
其他示例如下:
import torch
import numpy as np
t1 = torch.zeros(1, 2)
print(t1)
t2 = torch.arange(4)
print(t2)
t3 = torch.linspace(10, 5, 6)
print(t3)
nd = np.array([1, 2, 3, 4])
t4 = torch.from_numpy(nd)
print(t4)
其他例子基本与上面基本差不多,这里不在赘述。
修改Tensor维度
同样的与Numpy一样,Tensor一样有维度的修改函数,具体的方法如下表所示:
函数 | 意义 |
size() | 返回张量的shape,即维度 |
numel(input) | 计算张量的元素个数 |
view(*shape) | 修改张量的shape,但View返回的对象与源张量共享内存,修改一个,另一个也被修改。Reshape将生成新的张量,而不要求源张量是连续的,View(-1)展平数组 |
resize | 类似与view,但在size超出时,会重新分配内存空间 |
item | 若张量为单元素,则返回Python的标量 |
unsqueeze | 在指定的维度增加一个“1” |
squeeze | 在指定的维度压缩一个“1” |
示例代码如下所示:
import torch
t1 = torch.Tensor([[1, 2]])
print(t1)
print(t1.size())
print(t1.dim())
print(t1.view(2, 1))
print(t1.view(-1))
print(torch.unsqueeze(t1, 0))
print(t1.numel())
运行之后,效果如下:
截取元素
当然,我们创建Tensor张量,是为了使用里面的数据,那么就不可避免的需要获取数据进行处理,具体截取元素的方式如表:
函数 | 意义 |
index_select(input,dim,index) | 在指定维度选择一些行或者列 |
nonzero(input) | 获取非0元素的下标 |
masked_select(input,mask) | 使用二元值进行选择 |
gather(input,dim,index) | 在指定维度上选择数据,输出的维度与index一致(index的类型必须是LongTensor类型的) |
scatter_(input,dim,index,src) | 为gatter的反操作,根据指定索引补充数据(将src中数据根据index中的索引按照dim的方向填进input中) |
示例代码如下所示:
import torch
# 设置随机数种子,保证每次运行结果一致
torch.manual_seed(100)
t1 = torch.randn(2, 3)
# 打印t1
print(t1)
# 输出第0行数据
print(t1[0, :])
# 输出t1大于0的数据
print(torch.masked_select(t1, t1 > 0))
# 输出t1大于0的数据索引
print(torch.nonzero(t1))
# 获取第一列第一个值,第二列第二个值,第三列第二个值为第1行的值
# 获取第二列的第二个值,第二列第二个值,第三列第二个值为第2行的值
index = torch.LongTensor([[0, 1, 1], [1, 1, 1]])
# 取0表示以行为索引
a = torch.gather(t1, 0, index)
print(a)
# 反操作填0
z = torch.zeros(2, 3)
print(z.scatter_(1, index, a))
运行之后,效果如下:
我们a = torch.gather(t1, 0, index)对其做了一个图解,方便大家理解。如下图所示:
当然,我们直接有公司计算,因为这么多数据标线实在不好看,这里博主列出转换公司供大家参考:
当dim=0时,out[i,j]=input[index[i,j]][j]
当dim=1时,out[i,j]=input[i][index[i][j]]
简单的数学运算
与Numpy一样,Tensor也支持数学运算。这里,博主列出了常用的数学运算函数,方便大家参考:
函数 | 意义 |
abs/add | 绝对值/加法 |
addcdiv(t,v,t1,t2) | t1与t2逐元素相除后,乘v加t |
addcmul(t,v,t1,t2) | t1与t2逐元素相乘后,乘v加t |
ceil/floor | 向上取整/向下取整 |
clamp(t,min,max) | 将张量元素限制在指定区间 |
exp/log/pow | 指数/对数/幂 |
mul(或*)/neg | 逐元素乘法/取反 |
sigmoid/tanh/softmax | 激活函数 |
sign/sqrt | 取符号/开根号 |
需要注意的是,上面表格所有的函数操作均会创建新的Tensor,如果不需要创建新的,使用这些函数的下划线"_"版本。
示例如下:
t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))
运行之后,效果如下:
上面的这些函数都很好理解,只有一个函数相信没接触机器学习的时候,不大容易理解。也就是sigmoid()激活函数,它的公式如下:
归并操作
简单的理解,就是对张量进行归并或者说合计等操作,这类操作的输入输出维度一般并不相同,而且往往是输入大于输出维度。而Tensor的归并函数如下表所示:
函数 | 意义 |
cumprod(t,axis) | 在指定维度对t进行累积 |
cumsum | 在指定维度对t进行累加 |
dist(a,b,p=2) | 返回a,b之间的p阶范数 |
mean/median | 均值/中位数 |
std/var | 标准差/方差 |
norm(t,p=2) | 返回t的p阶范数 |
prod(t)/sum(t) | 返回t所有元素的积/和 |
示例代码如下所示:
t = torch.linspace(0, 10, 6)
a = t.view((2, 3))
print(a)
b = a.sum(dim=0)
print(b)
b = a.sum(dim=0, keepdim=True)
print(b)
运行之后,效果如下:
需要注意的是,sum函数求和之后,dim的元素个数为1,所以要被去掉,如果要保留这个维度,则应当keepdim=True,默认为False。
比较操作
在量化交易中,我们一般会对股价进行比较。而Tensor张量同样也支持比较的操作,一般是进行逐元素比较。具体函数如下表:
函数 | 意义 |
equal | 比较张量是否具有相同的shape与值 |
eq | 比较张量是否相等,支持broadcast |
ge/le/gt/lt | 大于/小于比较/大于等于/小于等于比较 |
max/min(t,axis) | 返回最值,若指定axis,则额外返回下标 |
topk(t,k,dim) | 在指定的dim维度上取最高的K个值 |
示例代码如下所示:
t = torch.Tensor([[1, 2], [3, 4]])
t1 = torch.Tensor([[1, 1], [4, 4]])
# 获取最大值
print(torch.max(t))
# 比较张量是否相等
# equal直接返回True或False
print(torch.equal(t, t1))
# eq返回对应位置是否相等的布尔值与两者维度相同
print(torch.eq(t, t1))
# 取最大的2个元素,返回索引与值
print(torch.topk(t, 1, dim=0))
运行之后,输出如下:
矩阵运算
机器学习与深度学习中,存在大量的矩阵运算。与Numpy一样常用的矩阵运算一样,一种是逐元素相乘,一种是点积乘法。函数如下表所示:
函数 | 意义 |
dot(t1,t2) | 计算t1与t2的点积,但只能计算1维张量 |
mm(mat1,mat2) | 计算矩阵乘法 |
bmm(tatch1,batch2) | 含batch的3D矩阵乘法 |
mv(t1,v1) | 计算矩阵与向量乘法 |
t | 转置 |
svd(t) | 计算t的SVD分解 |
这里有3个主要的点积计算需要区分,dot()函数只能计算1维张量,mm()函数只能计算二维的张量,bmm只能计算三维的矩阵张量。示例如下:
# 计算1维点积
a = torch.Tensor([1, 2])
b = torch.Tensor([3, 4])
print(torch.dot(a, b))
# 计算2维点积
a = torch.randint(10, (2, 3))
b = torch.randint(6, (3, 4))
print(torch.mm(a, b))
# 计算3维点积
a = torch.randint(10, (2, 2, 3))
b = torch.randint(6, (2, 3, 4))
print(torch.bmm(a, b))
运行之后,输出如下:
相关推荐
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
-
引言在现代应用程序中,数据的存储和处理变得愈发复杂多样。MySQL8.0引入了丰富的JSON相关函数,为我们提供了更灵活的数据存储和检索方式。本文将深入探讨MySQL8.0中的JSON...
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
-
前言虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使...
- MySQL的json查询之json_array(mysql json_search)
-
json_array顾名思义就是创建一个数组,实际的用法,我目前没有想到很好的使用场景。使用官方的例子说明一下吧。例一selectjson_array(1,2,3,4);json_array虽然单独...
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
-
#头条创作挑战赛#一、LSTM原理长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度...
- TensorBoard最全使用教程:看这篇就够了
-
机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍TensorFlow的开源工具套件,称为TensorBoard,虽然他是TensorFlow...
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
-
本文约4600字,建议阅读10分钟本文介绍了图神经网络版本的对比。KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Ar...
- kornia,一个实用的 Python 库!(python kkb_tools)
-
大家好,今天为大家分享一个实用的Python库-kornia。Github地址:https://github.com/kornia/kornia/Kornia是一个基于PyTorch的开源计算...
- 图像分割掩码标注转YOLO多边形标注
-
Ultralytics团队付出了巨大的努力,使创建自定义YOLO模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练yolo分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的...
- [python] 向量检索库Faiss使用指北
-
Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完...
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
-
并行运行70B大模型我们已经看到,量化已经成为在低端GPU(比如Colab、Kaggle等)上加载大型语言模型(LLMs)的最常见方法了,但这会降低准确性并增加幻觉现象。那如果你和你的朋友们...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- 人工智能——图像识别(人工智能图像识别流程)
-
概述图像识别(ImageRecognition)是计算机视觉的核心任务之一,旨在通过算法让计算机理解图像内容,包括分类(识别物体类别)、检测(定位并识别多个物体)、分割(像素级识别)等,常见的应用场...
- PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法
-
在上一篇文章中,我们介绍了DeepDeterministicPolicyGradient(DDPG)算法,并使用它解决了Pendulum问题。本文将深入探讨TwinDelayed...
- 大模型中常用的注意力机制GQA详解以及Pytorch代码实现
-
分组查询注意力(GroupedQueryAttention)是一种在大型语言模型中的多查询注意力(MQA)和多头注意力(MHA)之间进行插值的方法,它的目标是在保持MQA速度的同时...
- pytorch如何快速创建具有特殊意思的tensor张量?
-
专栏推荐正文我们通过值可以看到torch.empty并没有进行初始化创建tensor并进行随机初始化操作,常用rand/rand_like,randint正态分布(0,1)指定正态分布的均值还有方差i...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
-
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
- MySQL的json查询之json_array(mysql json_search)
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
- TensorBoard最全使用教程:看这篇就够了
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
- kornia,一个实用的 Python 库!(python kkb_tools)
- 图像分割掩码标注转YOLO多边形标注
- [python] 向量检索库Faiss使用指北
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)