Pandas库使用教程(pandas库的主要用途)
liuian 2025-05-02 11:46 6 浏览
Pandas是一个强大的Python库,用于数据处理和分析,它提供了灵活的数据结构和数据操作功能,非常适合处理各种数据源,如CSV文件、Excel表格、SQL数据库等。
目录
1. 介绍
2. 安装
3. 基本数据结构
Series
DataFrame
4. 数据读取与写入
读取csv、excel等文件数据
写入csv、excel等文件数据
5. 数据选择与操作
切片和索引
数据过滤
数据排序
6. 数据统计与分析
描述性统计
数据聚合
7. 数据可视化
8. 结论
1. 介绍
Pandas是一个强大的数据处理和分析库,它构建在NumPy之上,提供了更高级的数据结构和数据操作功能,使数据清洗、分析和可视化变得更容易。它的两个主要数据结构是Series和DataFrame,可以用于处理各种类型的数据。
pip install pandas
3. 基本数据结构
Series
Series是一维标记数组,可以存储各种数据类型。你可以将Series视为带有标签的数组或字典。
import pandas as pd
data = pd.Series([10, 20, 30, 40, 50])
print(data)
DataFrame
DataFrame是一个二维数据结构,类似于电子表格或SQL表。它由行和列组成,每列可以包含不同类型的数据。
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
print(data)
# Name, Age
#0,Alice,25
#1,Bob,30
#2,Charlie,35
import pandas as pd
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
# Site Age
#0 Google 10.0
#1 Runoob 12.0
#2 Wiki 13.0
遍历
使用for循环遍历行(常用):
这种方法逐行遍历DataFrame,返回每行的索引和数据。iterrows()方法返回一个生成器,逐行返回每一行的数据
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
for index, row in data.iterrows():
print(f'Index: {index}, Name: {row["Name"]}, Age: {row["Age"]}')
#Index: 0, Name: Alice, Age: 25
#Index: 1, Name: Bob, Age: 30
#Index: 2, Name: Charlie, Age: 35
使用itertuples()方法遍历行:
for row in data.itertuples():
print(f'Index: {row.Index}, Name: {row.Name}, Age: {row.Age}')
#Index: 0, Name: Alice, Age: 25
#Index: 1, Name: Bob, Age: 30
#Index: 2, Name: Charlie, Age: 35
使用apply()方法遍历列:
apply()方法可以用于对每一行或每一列的数据应用自定义函数。
def process_data(row):
return f'Name: {row["Name"]}, Age: {row["Age"]}'
data['Info'] = data.apply(process_data, axis=1)
print(data['Info'])
#0 Name: Alice, Age: 25
#1 Name: Bob, Age: 30
#2 Name: Charlie, Age: 35
#Name: Info, dtype: object
4. 数据读取与写入
读取CSV文件数据
Pandas可以轻松读取各种数据格式,包括CSV文件:
import pandas as pd
data = pd.read_csv('data.csv')
print(data.head()) # 查看前几行数据
写入CSV文件数据
你也可以将数据保存到CSV文件:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
data.to_csv('output.csv', index=False) # 将数据保存到output.csv文件
读取json数据
[
{
"id": "A001",
"name": "baidu",
"url": "https://www.baidu.com/",
"likes": 61
},
{
"id": "A002",
"name": "Google",
"url": "https://www.google.com",
"likes": 124
},
{
"id": "A003",
"name": "taobao",
"url": "www.taobao.com",
"likes": 45
}
]
to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。
import pandas as pd
df = pd.read_json('sites.json')
print(df.to_string())
# id name url likes
#0 A001 baidu https://www.baidu.com/ 61
#1 A002 Google https://www.google.com 124
#2 A003 taobao www.taobao.com 45
df = pd.DataFrame(data)
JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:
import pandas as pd
# 字典格式的 JSON
data_dict = {
"col1":{"row1":1,"row2":2,"row3":3},
"col2":{"row1":"x","row2":"y","row3":"z"}
}
# 读取 JSON 转为 DataFrame
df = pd.DataFrame(data_dict)
print(df)
# col1 col2
#row1 1 x
#row2 2 y
#row3 3 z
内嵌的 JSON 数据
假设有一组内嵌的 JSON 数据文件 nested_list.json :
{
"school_name": "ABC primary school",
"class": "Year 1",
"students": [
{
"id": "A001",
"name": "Tom",
"math": 60,
"physics": 66,
"chemistry": 61
},
{
"id": "A002",
"name": "James",
"math": 89,
"physics": 76,
"chemistry": 51
},
{
"id": "A003",
"name": "Jenny",
"math": 79,
"physics": 90,
"chemistry": 78
}]
}
import pandas as pd
df = pd.read_json('nested_list.json')
df
# school_name class students
#0 ABC primary school Year 1 {'id': 'A001', 'name': 'Tom', 'math': 60, 'phy...
#1 ABC primary school Year 1 {'id': 'A002', 'name': 'James', 'math': 89, 'p...
#2 ABC primary school Year 1 {'id': 'A003', 'name': 'Jenny', 'math': 79, 'p...
这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
data = json.loads(f.read())
# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)
# id name math physics chemistry
#0 A001 Tom 60 66 61
#1 A002 James 89 76 51
#2 A003 Jenny 79 90 78
data = json.loads(f.read()) 使用 Python JSON 模块载入数据。
json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students。
显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
data = json.loads(f.read())
# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'], meta=['school_name', 'class'])
print(df_nested_list)
# id name math physics chemistry school_name class
#0 A001 Tom 60 66 61 ABC primary school Year 1
#1 A002 James 89 76 51 ABC primary school Year 1
#2 A003 Jenny 79 90 78 ABC primary school Year 1
接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下:
{
"school_name": "local primary school",
"class": "Year 1",
"info": {
"president": "John Kasich",
"address": "ABC road, London, UK",
"contacts": {
"email": "admin@e.com",
"tel": "123456789"
}
},
"students": [
{
"id": "A001",
"name": "Tom",
"math": 60,
"physics": 66,
"chemistry": 61
},
{
"id": "A002",
"name": "James",
"math": 89,
"physics": 76,
"chemistry": 51
},
{
"id": "A003",
"name": "Jenny",
"math": 79,
"physics": 90,
"chemistry": 78
}]
}
nested_mix.json 文件转换为 DataFrame:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_mix.json','r') as f:
data = json.loads(f.read())
df = pd.json_normalize(
data,
record_path =['students'],
meta=[
'class',
['info', 'president'],
['info', 'contacts', 'tel']
]
)
df
读取内嵌数据中的一组数据
以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:
5. 数据选择与操作
切片和索引
你可以使用标签或位置来选择数据:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
# 使用标签选择数据
print(data['Name'])
print("+++"*10)
# 使用位置选择数据
print(data.iloc[0])
#0 Alice
#1 Bob
#2 Charlie
#Name: Name, dtype: object
#++++++++++++++++++++++++++++++
#Name Alice
#Age 25
#Name: 0, dtype: object
数据过滤
你可以根据条件过滤数据:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
filtered_data = data[data['Age'] > 30]
print(filtered_data)
# Name Age
#2 Charlie 35
数据排序
对数据进行排序:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
sorted_data = data.sort_values(by='Age', ascending=False)
print(sorted_data)
# Name Age
#2 Charlie 35
#1 Bob 30
#0 Alice 25
6. 数据统计与分析
描述性统计
Pandas提供了各种描述性统计方法,如mean、median、std等:
import pandas as pd
data = pd.DataFrame({
'Age': [25, 30, 35, 40, 45]
})
print(data.mean()) # 计算平均值
print(data.median()) # 计算中位数
print(data.std()) # 计算标准差
#Age 35.0
#dtype: float64
#Age 35.0
#dtype: float64=
#Age 7.905694
#dtype: float64
数据聚合
你可以使用groupby方法对数据进行聚合操作:
import pandas as pd
data = pd.DataFrame({
'Category': ['A', 'B', 'A', 'B', 'A'],
'Value': [10, 20, 15, 25, 30]
})
grouped_data = data.groupby('Category').sum()
print(grouped_data)
# Value
#Category
#A 55
#B 45
7. 数据可视化
Pandas结合其他库如Matplotlib和Seaborn可以用于数据可视化。这里只提供一个简单示例:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.DataFrame({
'Year': [2010, 2011, 2012, 2013, 2014],
'Sales': [100, 150, 200, 250, 300]
})
data.plot(x='Year', y='Sales', kind='line')
plt.show()
最后
Pandas是一个强大的Python库,用于数据处理和分析。本教程涵盖了Pandas的基本数据结构、数据读写、数据操作、统计分析和简单可视化。希望这个教程能帮助你入门Pandas,并在数据处理工作中发挥作用。如果你想深入学习Pandas,可以查看Pandas官方文档和更高级的教程。
参考文献:
1. https://www.runoob.com/pandas/pandas-json.html
相关推荐
- 打开新世界,教你用RooCode+Copliot+Mcp打造一个自己的Manus
-
本文耗时两天打造,想要一遍走通需要花点时间,建议找个专注的时间开搞!这不仅是个免费使用claude3.5的方案,也是一个超级智能体方案,绝对值得一试!最近Manus真是赚足了眼球,然而我还是没有邀请码...
- Git仓库(git仓库有哪些)
-
#Git仓库使用方法流程详解##一、环境搭建与基础配置###1.1安装与初始化-**安装Git**:官网下载安装包,默认配置安装-**配置全局信息**:```bashgitconfig...
- idea版的cursor:Windsurf Wave 7(ideawalk)
-
在企业环境中,VisualStudioCode和JetBrains系列是最常用的开发工具,覆盖了全球绝大多数开发者。这两类IDE各有优势,但JetBrains系列凭借其针对特定语言和企业场景的深度...
- Ai 编辑器 Cursor 零基础教程:推箱子小游戏实战演练
-
最近Ai火的同时,Ai编辑器Cursor同样火了一把。今天我们就白漂一下Cursor,使用免费版本搞一个零基础教程,并实战演练一个“网页版的推箱子小游戏”。通过这篇文章,让你真正了解cursor是什么...
- ChatGPT深度集成于苹果Mac软件 编码能力得到提升
-
【CNMO科技消息】近日,OpenAI发布了针对MacOS的桌面应用程序,并宣布了一系列与各类应用程序的互操作性功能,标志着ChatGPT正在从聊天机器人向AI智能体工具进化。此次发布的MacOS桌面...
- 日常开发中常用的git操作命令和使用技巧
-
日常开发中常用的git操作命令,从配置、初始化本地仓库到提交代码的常用git操作命令使用git前的配置刚使用git,先要在电脑上安装好git,接着我们需要配置一下帐户信息:用户名和邮箱。#设置用户名...
- Trae IDE 如何与 GitHub 无缝对接?
-
TraeIDE内置了GitHub集成功能,让开发者可以直接在IDE里管理代码仓库和版本控制。1.直接从GitHub克隆项目如果你想把GitHub上的代码拉到本地,Trae提供了...
- China's diplomacy to further provide strong support for country's modernization: FM
-
BEIJING,March7(Xinhua)--ChineseForeignMinisterWangYisaidFridaythatChina'sdiplomacywil...
- 三十分钟入门基础Go(Java小子版)(java入门级教程)
-
前言Go语言定义Go(又称Golang)是Google的RobertGriesemer,RobPike及KenThompson开发的一种静态、强类型、编译型语言。Go语言语法与...
- China will definitely take countermeasures in response to arbitrary pressure: FM
-
BEIJING,March7(Xinhua)--Chinawilldefinitelytakecountermeasuresinresponsetoarbitrarypre...
- Go操作etcd(go操作docker实现沙箱)
-
Go语言操作etcd,这里推荐官方包etcd/clientv3。文档:https://pkg.go.dev/go.etcd.io/etcd/clientv3etcdv3使用gRPC进行远程过程调...
- 腾讯 Go 性能优化实战(腾讯游戏优化软件)
-
作者:trumanyan,腾讯CSIG后台开发工程师项目背景网关服务作为统一接入服务,是大部分服务的统一入口。为了避免成功瓶颈,需要对其进行尽可能地优化。因此,特别总结一下golang后台服务...
- golang 之JWT实现(golang gin jwt)
-
什么是JSONWebToken?JSONWebToken(JWT)是一个开放标准(RFC7519),它定义了一种紧凑且自包含的方式,用于在各方之间以JSON方式安全地传输信息。由于此信息是经...
- 一文看懂 session 和 cookie(session cookie的区别)
-
-----------cookie大家应该都熟悉,比如说登录某些网站一段时间后,就要求你重新登录;再比如有的同学很喜欢玩爬虫技术,有时候网站就是可以拦截住你的爬虫,这些都和cookie有关。如果...
- 有望取代 java?GO 语言项目了解一下
-
GO语言在编程界一直让人又爱又恨,有人说“GO将统治下一个十年”,“几乎所有新的、有趣的东西都是用Go写的”;也有人说它过于死板,使用感太差。国外有Google、AWS、Cloudflar...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
-
- 打开新世界,教你用RooCode+Copliot+Mcp打造一个自己的Manus
- Git仓库(git仓库有哪些)
- idea版的cursor:Windsurf Wave 7(ideawalk)
- Ai 编辑器 Cursor 零基础教程:推箱子小游戏实战演练
- ChatGPT深度集成于苹果Mac软件 编码能力得到提升
- 日常开发中常用的git操作命令和使用技巧
- Trae IDE 如何与 GitHub 无缝对接?
- China's diplomacy to further provide strong support for country's modernization: FM
- 三十分钟入门基础Go(Java小子版)(java入门级教程)
- China will definitely take countermeasures in response to arbitrary pressure: FM
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)