Pandas库使用教程(pandas库的主要用途)
liuian 2025-05-02 11:46 52 浏览
Pandas是一个强大的Python库,用于数据处理和分析,它提供了灵活的数据结构和数据操作功能,非常适合处理各种数据源,如CSV文件、Excel表格、SQL数据库等。
目录
1. 介绍
2. 安装
3. 基本数据结构
Series
DataFrame
4. 数据读取与写入
读取csv、excel等文件数据
写入csv、excel等文件数据
5. 数据选择与操作
切片和索引
数据过滤
数据排序
6. 数据统计与分析
描述性统计
数据聚合
7. 数据可视化
8. 结论
1. 介绍
Pandas是一个强大的数据处理和分析库,它构建在NumPy之上,提供了更高级的数据结构和数据操作功能,使数据清洗、分析和可视化变得更容易。它的两个主要数据结构是Series和DataFrame,可以用于处理各种类型的数据。
pip install pandas3. 基本数据结构
Series
Series是一维标记数组,可以存储各种数据类型。你可以将Series视为带有标签的数组或字典。
import pandas as pd
data = pd.Series([10, 20, 30, 40, 50])
print(data)DataFrame
DataFrame是一个二维数据结构,类似于电子表格或SQL表。它由行和列组成,每列可以包含不同类型的数据。
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
print(data)
# Name, Age
#0,Alice,25
#1,Bob,30
#2,Charlie,35import pandas as pd
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
# Site Age
#0 Google 10.0
#1 Runoob 12.0
#2 Wiki 13.0遍历
使用for循环遍历行(常用):
这种方法逐行遍历DataFrame,返回每行的索引和数据。iterrows()方法返回一个生成器,逐行返回每一行的数据
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
for index, row in data.iterrows():
print(f'Index: {index}, Name: {row["Name"]}, Age: {row["Age"]}')
#Index: 0, Name: Alice, Age: 25
#Index: 1, Name: Bob, Age: 30
#Index: 2, Name: Charlie, Age: 35使用itertuples()方法遍历行:
for row in data.itertuples():
print(f'Index: {row.Index}, Name: {row.Name}, Age: {row.Age}')
#Index: 0, Name: Alice, Age: 25
#Index: 1, Name: Bob, Age: 30
#Index: 2, Name: Charlie, Age: 35使用apply()方法遍历列:
apply()方法可以用于对每一行或每一列的数据应用自定义函数。
def process_data(row):
return f'Name: {row["Name"]}, Age: {row["Age"]}'
data['Info'] = data.apply(process_data, axis=1)
print(data['Info'])
#0 Name: Alice, Age: 25
#1 Name: Bob, Age: 30
#2 Name: Charlie, Age: 35
#Name: Info, dtype: object4. 数据读取与写入
读取CSV文件数据
Pandas可以轻松读取各种数据格式,包括CSV文件:
import pandas as pd
data = pd.read_csv('data.csv')
print(data.head()) # 查看前几行数据写入CSV文件数据
你也可以将数据保存到CSV文件:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
data.to_csv('output.csv', index=False) # 将数据保存到output.csv文件读取json数据
[
{
"id": "A001",
"name": "baidu",
"url": "https://www.baidu.com/",
"likes": 61
},
{
"id": "A002",
"name": "Google",
"url": "https://www.google.com",
"likes": 124
},
{
"id": "A003",
"name": "taobao",
"url": "www.taobao.com",
"likes": 45
}
]to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。
import pandas as pd
df = pd.read_json('sites.json')
print(df.to_string())
# id name url likes
#0 A001 baidu https://www.baidu.com/ 61
#1 A002 Google https://www.google.com 124
#2 A003 taobao www.taobao.com 45
df = pd.DataFrame(data)JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:
import pandas as pd
# 字典格式的 JSON
data_dict = {
"col1":{"row1":1,"row2":2,"row3":3},
"col2":{"row1":"x","row2":"y","row3":"z"}
}
# 读取 JSON 转为 DataFrame
df = pd.DataFrame(data_dict)
print(df)
# col1 col2
#row1 1 x
#row2 2 y
#row3 3 z内嵌的 JSON 数据
假设有一组内嵌的 JSON 数据文件 nested_list.json :
{
"school_name": "ABC primary school",
"class": "Year 1",
"students": [
{
"id": "A001",
"name": "Tom",
"math": 60,
"physics": 66,
"chemistry": 61
},
{
"id": "A002",
"name": "James",
"math": 89,
"physics": 76,
"chemistry": 51
},
{
"id": "A003",
"name": "Jenny",
"math": 79,
"physics": 90,
"chemistry": 78
}]
}import pandas as pd
df = pd.read_json('nested_list.json')
df
# school_name class students
#0 ABC primary school Year 1 {'id': 'A001', 'name': 'Tom', 'math': 60, 'phy...
#1 ABC primary school Year 1 {'id': 'A002', 'name': 'James', 'math': 89, 'p...
#2 ABC primary school Year 1 {'id': 'A003', 'name': 'Jenny', 'math': 79, 'p...这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
data = json.loads(f.read())
# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)
# id name math physics chemistry
#0 A001 Tom 60 66 61
#1 A002 James 89 76 51
#2 A003 Jenny 79 90 78data = json.loads(f.read()) 使用 Python JSON 模块载入数据。
json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students。
显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:
data = json.loads(f.read())
# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'], meta=['school_name', 'class'])
print(df_nested_list)
# id name math physics chemistry school_name class
#0 A001 Tom 60 66 61 ABC primary school Year 1
#1 A002 James 89 76 51 ABC primary school Year 1
#2 A003 Jenny 79 90 78 ABC primary school Year 1接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下:
{
"school_name": "local primary school",
"class": "Year 1",
"info": {
"president": "John Kasich",
"address": "ABC road, London, UK",
"contacts": {
"email": "admin@e.com",
"tel": "123456789"
}
},
"students": [
{
"id": "A001",
"name": "Tom",
"math": 60,
"physics": 66,
"chemistry": 61
},
{
"id": "A002",
"name": "James",
"math": 89,
"physics": 76,
"chemistry": 51
},
{
"id": "A003",
"name": "Jenny",
"math": 79,
"physics": 90,
"chemistry": 78
}]
}nested_mix.json 文件转换为 DataFrame:
import pandas as pd
import json
# 使用 Python JSON 模块载入数据
with open('nested_mix.json','r') as f:
data = json.loads(f.read())
df = pd.json_normalize(
data,
record_path =['students'],
meta=[
'class',
['info', 'president'],
['info', 'contacts', 'tel']
]
)
df读取内嵌数据中的一组数据
以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:
5. 数据选择与操作
切片和索引
你可以使用标签或位置来选择数据:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
# 使用标签选择数据
print(data['Name'])
print("+++"*10)
# 使用位置选择数据
print(data.iloc[0])
#0 Alice
#1 Bob
#2 Charlie
#Name: Name, dtype: object
#++++++++++++++++++++++++++++++
#Name Alice
#Age 25
#Name: 0, dtype: object数据过滤
你可以根据条件过滤数据:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
filtered_data = data[data['Age'] > 30]
print(filtered_data)
# Name Age
#2 Charlie 35数据排序
对数据进行排序:
import pandas as pd
data = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
})
sorted_data = data.sort_values(by='Age', ascending=False)
print(sorted_data)
# Name Age
#2 Charlie 35
#1 Bob 30
#0 Alice 256. 数据统计与分析
描述性统计
Pandas提供了各种描述性统计方法,如mean、median、std等:
import pandas as pd
data = pd.DataFrame({
'Age': [25, 30, 35, 40, 45]
})
print(data.mean()) # 计算平均值
print(data.median()) # 计算中位数
print(data.std()) # 计算标准差
#Age 35.0
#dtype: float64
#Age 35.0
#dtype: float64=
#Age 7.905694
#dtype: float64数据聚合
你可以使用groupby方法对数据进行聚合操作:
import pandas as pd
data = pd.DataFrame({
'Category': ['A', 'B', 'A', 'B', 'A'],
'Value': [10, 20, 15, 25, 30]
})
grouped_data = data.groupby('Category').sum()
print(grouped_data)
# Value
#Category
#A 55
#B 457. 数据可视化
Pandas结合其他库如Matplotlib和Seaborn可以用于数据可视化。这里只提供一个简单示例:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.DataFrame({
'Year': [2010, 2011, 2012, 2013, 2014],
'Sales': [100, 150, 200, 250, 300]
})
data.plot(x='Year', y='Sales', kind='line')
plt.show()最后
Pandas是一个强大的Python库,用于数据处理和分析。本教程涵盖了Pandas的基本数据结构、数据读写、数据操作、统计分析和简单可视化。希望这个教程能帮助你入门Pandas,并在数据处理工作中发挥作用。如果你想深入学习Pandas,可以查看Pandas官方文档和更高级的教程。
参考文献:
1. https://www.runoob.com/pandas/pandas-json.html
相关推荐
- 手机cdr转jpg最简单的方法(手机cdr转换jpg)
-
cdr文件怎么转换成jpg,快来看下操作方法吧。方法/步骤1、打开电脑中的cdr软件,点击文件,打开,打开需要转换格式的cdr文件。2、点击菜单栏的文件,导出。3、打开导出对话框选择保存文件路径。4、...
- xp永久激活工具(xp永久激活码)
-
如果你需要重置XP的激活器,你需要先打开“开始”菜单,然后选择“运行”。在运行对话框中,输入“regedit”,然后按回车键。这会打开注册表编辑器。在编辑器中,使用左侧面板来导航到“HKEY_LOCA...
- cad2008激活序列号(激活cad的序列号)
-
1.首先运行“AutoCAD2008安装包”中的“Setup.exe”安装AutoCAD2008,安装过程需要十分钟左右;2.第一次运行AutoCAD2008时,请在注册界面输入序列号666-9...
- 自己可以重装电脑系统么(可以自己重装系统吗)
-
电脑自身也可以重装系统。1.电脑是一个可编程的设备,通过特定的步骤和操作,用户可以自行进行系统重装。2.重装系统的过程包括备份重要数据、获取系统安装介质、重新启动电脑进入安装界面、按照指引选择系统...
- 苹果处理器性能排行(苹果处理器性能排行榜平板)
-
1、截止至最新的iPhoneXS上搭载的A12,从iPhone4首次搭载A4处理器开始,目前已经有9代的苹果A系列处理器;2、A4是一颗45nm制程的ARMCortex-A8的单核心处理器,GP...
- 苹果手机怎么录屏(苹果手机怎么录屏在哪里打开)
-
iPhone手机的屏幕录制功能需要在设置里面进行添加,添加成功之后,就可以使用录屏功能了。点击控制中心进入iPhone手机的设置,来到设置之后,找到控制中心选项并点击。点击加号添加录屏功能来到控制中心...
- 电脑怎么打开系统还原(电脑怎么开启系统还原的功能)
-
右键此电脑,属性,系统保护,配置,勾选启用系统保护,确定,创建,输入还原点描述,点击创建,系统提示已成功创建还原点,点击关闭,当需要还原的时候,点击上面的系统还原,选择需要还原的节点,点击完成,即可开...
- ghost系统下载xp(非ghostxp下载)
-
蒲公英系统网站能下载。下载后缀为gho的xp系统,使用体验非常棒效果非常好。以上信息根据美国华盛顿操作系统邮报最新消息显示。不能装钉钉的。在WindowsXP系统上是不能安装钉钉来上网课的。要使用钉...
- 电脑安全模式怎么用(电脑安全模式怎么按出来)
-
1.进入运行输入指令确定键盘上按下win+r组合键,打开运行,输入msconfig,点击确定。2.进引导系统选安全引导进入页面后,点击引导,选中系统,勾选安全引导,点击确定。3.重启进入安全模式弹出...
- win10可选更新(win10可选更新和必要更新)
-
首先确保系统是激活状态。如果不是,可以用小马激活或KMS激活软件等工具激活。1.打开开始菜单,选择“设置”,选择“更新和安全”,设置自动检测安装更新,接受win10推送。电脑接受win10推送后...
- 讯飞语音输入法(讯飞语音输入法电脑版)
-
手机中讯飞语音输入法操作起来非常的简便。我们可以先打开讯飞语音。输入法在输入法键盘上的上端有一个麦克风的标识,我们只要点开麦克风的标识,就可以说话了,上面就会出现相应的文字了。文字可以自动帮我们识别修...
- 电脑品牌型号在哪里看(电脑选什么牌子的好)
-
查看自己电脑品牌型号和具体配置的具体方法:1.右键点击桌面上的“这台电脑”图标,弹出的菜单中选择“属性”。2.在此界面即可看到你的电脑的CPU品牌(AMD)、型号(A6-5200)、频率(2.0GHz...
- 网卡驱动装不上怎么回事(网卡驱动装不了怎么办)
-
可能原因如下1、这种情况是因为系统中没有集成电脑网卡所对应的驱动程序。2、这种情况可以利用鲁大师查询网卡的具体型号,然后去官网或者网络上下载对应的驱动重新安装就可以正常上网了。可能原因如下:1,估计是...
- 一周热门
-
-
飞牛OS入门安装遇到问题,如何解决?
-
如何在 iPhone 和 Android 上恢复已删除的抖音消息
-
Boost高性能并发无锁队列指南:boost::lockfree::queue
-
大模型手册: 保姆级用CherryStudio知识库
-
用什么工具在Win中查看8G大的log文件?
-
如何在 Windows 10 或 11 上通过命令行安装 Node.js 和 NPM
-
威联通NAS安装阿里云盘WebDAV服务并添加到Infuse
-
Trae IDE 如何与 GitHub 无缝对接?
-
idea插件之maven search(工欲善其事,必先利其器)
-
如何修改图片拍摄日期?快速修改图片拍摄日期的6种方法
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
