学习Pandas中操作Excel,看这一篇文章就够了
liuian 2025-05-02 11:47 77 浏览
在数据分析和处理领域,Excel文件是常见的数据存储格式之一。Pandas库提供了强大的功能来读取、处理和写入Excel文件。本文将详细介绍如何使用Pandas操作Excel文件,包括读取、数据清洗、数据操作和写入等步骤。
1. 安装与配置
首先,确保你已经安装了Pandas库以及用于读写Excel文件的库(如 openpyxl 或 xlrd)。你可以使用以下命令进行安装:
pip install pandas openpyxl xlrd
2. 读取Excel文件
2.1 基本用法
使用 pd.read_excel() 函数可以从Excel文件中读取数据到DataFrame。以下是一个基本示例:
import pandas as pd
# 读取Excel文件
df = pd.read_excel('data.xlsx')
print(df.head())
2.2 指定工作表
如果Excel文件包含多个工作表,可以使用 sheet_name 参数指定要读取的工作表:
# 读取名为 'Sheet1' 的工作表
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df.head())
2.3 指定单元格范围
可以使用 usecols 参数指定要读取的列范围,使用 skiprows 和 nrows 参数指定要跳过的行和读取的行数:
# 读取第1到第3列,跳过前2行,读取10行
df = pd.read_excel('data.xlsx', usecols="A:C", skiprows=2, nrows=10)
print(df.head())
3. 数据检查与预处理
3.1 查看数据的基本信息
使用 head()、tail()、info() 和 describe() 函数可以查看数据的基本信息:
print(df.head()) # 显示前5行
print(df.tail()) # 显示后5行
print(df.info()) # 显示数据类型和缺失值信息
print(df.describe()) # 显示统计信息
3.2 数据类型检查与转换
可以使用 dtypes 属性查看数据类型,并使用 astype() 函数进行类型转换:
print(df.dtypes)
df['Column1'] = df['Column1'].astype('int')
3.3 检查缺失值
使用 isnull() 和 sum() 函数检查缺失值:
print(df.isnull().sum())
3.4 处理缺失值
可以使用 fillna() 函数填充缺失值,或使用 dropna() 函数删除包含缺失值的行或列:
# 填充缺失值
df.fillna(0, inplace=True)
# 删除包含缺失值的行
df.dropna(inplace=True)
4. 数据清洗与转换
4.1 重命名列
使用 rename() 函数重命名列:
df.rename(columns={'OldName': 'NewName'}, inplace=True)
4.2 删除重复数据
使用 drop_duplicates() 函数删除重复数据:
df.drop_duplicates(inplace=True)
4.3 数据替换
使用 replace() 函数进行数据替换:
df['Column1'].replace(10, 20, inplace=True)
4.4 数据排序
使用 sort_values() 函数进行数据排序:
df.sort_values(by='Column1', ascending=False, inplace=True)
4.5 数据分组与聚合
使用 groupby() 和 agg() 函数进行数据分组与聚合:
grouped = df.groupby('Category')
result = grouped['Value'].agg(['mean', 'sum'])
print(result)
5. 数据选择与过滤
5.1 按标签选择
使用 loc 按标签选择数据:
subset = df.loc[df['Column1'] > 10]
print(subset)
5.2 按位置选择
使用 iloc 按位置选择数据:
subset = df.iloc[0:5, 1:3]
print(subset)
5.3 布尔索引
使用布尔索引进行数据过滤:
subset = df[df['Column1'] > 10]
print(subset)
5.4 多条件过滤
使用多个条件进行数据过滤:
subset = df[(df['Column1'] > 10) & (df['Column2'] < 20)]
print(subset)
6. 数据操作
6.1 添加、删除列
使用 insert() 函数添加列,使用 drop() 函数删除列:
df.insert(1, 'NewColumn', [1, 2, 3, 4, 5])
df.drop(columns=['OldColumn'], inplace=True)
6.2 数据框合并
使用 concat()、merge() 和 join() 函数进行数据框合并:
# 使用 concat() 合并
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
result = pd.concat([df1, df2], ignore_index=True)
# 使用 merge() 合并
df1 = pd.DataFrame({'key': ['K0', 'K1'], 'A': [1, 2]})
df2 = pd.DataFrame({'key': ['K0', 'K1'], 'B': [3, 4]})
result = pd.merge(df1, df2, on='key')
# 使用 join() 合并
df1 = pd.DataFrame({'A': [1, 2]}, index=['K0', 'K1'])
df2 = pd.DataFrame({'B': [3, 4]}, index=['K0', 'K1'])
result = df1.join(df2)
6.3 数据透视表
使用 pivot_table() 函数创建数据透视表:
pivot_table = df.pivot_table(values='Value', index='Category', columns='Year', aggfunc='mean')
print(pivot_table)
6.4 交叉表
使用 crosstab() 函数创建交叉表:
crosstab = pd.crosstab(df['Category'], df['Year'])
print(crosstab)
7. 写入Excel文件
7.1 基本用法
使用 pd.DataFrame.to_excel() 函数将DataFrame写入Excel文件:
df.to_excel('output.xlsx', index=False)
7.2 指定工作表名称
可以使用 sheet_name 参数指定工作表名称:
df.to_excel('output.xlsx', sheet_name='Sheet1', index=False)
7.3 指定单元格位置
可以使用 startrow 和 startcol 参数指定单元格位置:
df.to_excel('output.xlsx', startrow=1, startcol=2, index=False)
7.4 处理多个工作表
使用 ExcelWriter 类处理多个工作表:
with pd.ExcelWriter('output.xlsx') as writer:
df1.to_excel(writer, sheet_name='Sheet1', index=False)
df2.to_excel(writer, sheet_name='Sheet2', index=False)
7.5 设置样式和格式
可以使用 openpyxl 库设置单元格样式和格式:
from openpyxl import Workbook
from openpyxl.styles import Font
with pd.ExcelWriter('output.xlsx', engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Sheet1', index=False)
workbook = writer.book
worksheet = workbook['Sheet1']
for cell in worksheet['A'] + worksheet['B']:
cell.font = Font(bold=True)
8. 实战项目
为了使实战项目更具实际操作性,我们设计一个简单的Excel数据集,该数据集包含一些虚拟的销售数据。这个数据集将包括以下列:
- Date:销售日期
- Region:销售区域
- Product:产品名称
- Quantity:销售数量
- Unit Price:单价
- Sales:销售额(通过 Quantity 和 Unit Price 计算得出)
以下是这个数据集的示例数据:
Date | Region | Product | Quantity | Unit Price | Sales |
2023-01-01 | North | ProductA | 10 | 20 | 200 |
2023-01-01 | South | ProductB | 15 | 30 | 450 |
2023-01-02 | East | ProductA | 20 | 20 | 400 |
2023-01-02 | West | ProductC | 25 | 25 | 625 |
2023-01-03 | North | ProductB | 30 | 30 | 900 |
2023-01-03 | South | ProductC | 35 | 25 | 875 |
2023-01-04 | East | ProductA | 40 | 20 | 800 |
2023-01-04 | West | ProductB | 45 | 30 | 1350 |
2023-01-05 | North | ProductC | 50 | 25 | 1250 |
2023-01-05 | South | ProductA | 55 | 20 | 1100 |
你可以将以上数据保存到一个Excel文件中,例如 sales_data.xlsx,并使用以下Python代码来读取、处理和分析这些数据。
8.1 读取真实Excel数据集
读取一个包含销售数据的Excel文件:
import pandas as pd
# 读取Excel文件
df = pd.read_excel('sales_data.xlsx')
print(df.head())
8.2 数据清洗与预处理
进行数据清洗和预处理,包括处理缺失值、重命名列、删除重复数据等:
# 检查缺失值并填充
df.fillna(0, inplace=True)
# 重命名列
df.rename(columns={'Unit Price': 'Unit_Price'}, inplace=True)
# 删除重复数据
df.drop_duplicates(inplace=True)
8.3 数据分析与可视化
进行数据分析和可视化,例如计算销售额总和并绘制图表:
import matplotlib.pyplot as plt
# 计算总销售额
total_sales = df['Sales'].sum()
print(f'Total Sales: {total_sales}')
# 按区域汇总销售额
region_sales = df.groupby('Region')['Sales'].sum()
print(region_sales)
# 绘制销售额柱状图
region_sales.plot(kind='bar')
plt.xlabel('Region')
plt.ylabel('Total Sales')
plt.title('Total Sales by Region')
plt.show()
8.4 将结果写回Excel文件
将处理后的数据和分析结果写回Excel文件:
with pd.ExcelWriter('processed_sales_data.xlsx') as writer:
df.to_excel(writer, sheet_name='Data', index=False)
pd.DataFrame({'Total Sales': [total_sales]}).to_excel(writer, sheet_name='Summary', index=False)
region_sales.to_excel(writer, sheet_name='Region Sales')
9. 性能优化
9.1 数据取样
对于大型数据集,可以使用 sample() 函数进行数据取样:
sampled_df = df.sample(n=1000)
9.2 内存优化
使用 memory_usage() 函数检查内存使用情况,并使用 astype() 函数优化数据类型:
print(df.memory_usage(deep=True))
df['Column1'] = df['Column1'].astype('int32')
9.3 矢量化操作
矢量化操作是指在操作数组或数据时,通过使用向量化函数(通常是数组级函数)来替代显式的循环,以实现更高效的计算。这种方法利用了底层C、Fortran等语言的高效实现,显著提升了计算速度。
在Pandas中,矢量化操作通常涉及对整个Series或DataFrame进行操作,而不需要显式地遍历每个元素。矢量化操作不仅使代码更简洁、更易读,还能大幅提高数据处理的性能。
使用矢量化操作提高性能,例如使用 apply() 函数进行批量操作:
df['NewColumn'] = df['Column1'].apply(lambda x: x * 2)
以下是一些矢量化操作的示例:
示例1:简单数学运算
假设我们有一个包含销售数量的Series,我们希望将每个销售数量乘以2。
传统方法(使用循环):
import pandas as pd
# 创建示例数据
sales_quantities = pd.Series([10, 20, 30, 40, 50])
# 使用循环进行操作
doubled_quantities = []
for quantity in sales_quantities:
doubled_quantities.append(quantity * 2)
doubled_quantities = pd.Series(doubled_quantities)
print(doubled_quantities)
矢量化方法:
# 使用矢量化操作
doubled_quantities = sales_quantities * 2
print(doubled_quantities)
示例2:应用自定义函数
假设我们有一个包含产品价格的DataFrame,我们希望对每个价格应用一个折扣函数。
传统方法(使用循环和apply):
import pandas as pd
# 创建示例数据
data = {'Product': ['A', 'B', 'C'], 'Price': [100, 200, 300]}
df = pd.DataFrame(data)
# 定义折扣函数
def apply_discount(price):
return price * 0.9
# 使用apply方法
df['Discounted_Price'] = df['Price'].apply(apply_discount)
print(df)
矢量化方法:
# 使用矢量化操作
df['Discounted_Price'] = df['Price'] * 0.9
print(df)
示例3:条件操作
假设我们有一个包含销售数据的DataFrame,我们希望根据销售额为每个记录添加一个“高销售”标签。
传统方法(使用循环):
import pandas as pd
# 创建示例数据
data = {'Product': ['A', 'B', 'C'], 'Sales': [150, 300, 450]}
df = pd.DataFrame(data)
# 使用循环进行操作
high_sales_label = []
for sales in df['Sales']:
if sales > 200:
high_sales_label.append('High')
else:
high_sales_label.append('Low')
df['Sales_Label'] = high_sales_label
print(df)
矢量化方法:
# 使用矢量化操作
df['Sales_Label'] = df['Sales'].apply(lambda x: 'High' if x > 200 else 'Low')
print(df)
性能对比
矢量化操作通常比使用循环快得多,尤其是当数据量较大时。下面是一个简单的性能对比示例:
import pandas as pd
import numpy as np
import time
# 创建大规模示例数据
data = np.random.randint(1, 100, size=1000000)
df = pd.DataFrame(data, columns=['Value'])
# 使用循环进行操作
start_time = time.time()
doubled_values = []
for value in df['Value']:
doubled_values.append(value * 2)
doubled_values = pd.Series(doubled_values)
print("Loop time:", time.time() - start_time)
# 使用矢量化操作
start_time = time.time()
doubled_values = df['Value'] * 2
print("Vectorized time:", time.time() - start_time)
Loop time: 0.83 seconds
Vectorized time: 0.02 seconds
请注意,具体的时间取决于执行环境和硬件配置,但一般来说,矢量化操作的性能会显著优于显式循环。这个示例展示了在处理大数据集时,矢量化操作可以显著提升性能,通常会快一个数量级甚至多个数量级。使用矢量化操作不仅使代码更加简洁和易读,还能显著提高数据处理的效率。
相关推荐
- 手机cdr转jpg最简单的方法(手机cdr转换jpg)
-
cdr文件怎么转换成jpg,快来看下操作方法吧。方法/步骤1、打开电脑中的cdr软件,点击文件,打开,打开需要转换格式的cdr文件。2、点击菜单栏的文件,导出。3、打开导出对话框选择保存文件路径。4、...
- xp永久激活工具(xp永久激活码)
-
如果你需要重置XP的激活器,你需要先打开“开始”菜单,然后选择“运行”。在运行对话框中,输入“regedit”,然后按回车键。这会打开注册表编辑器。在编辑器中,使用左侧面板来导航到“HKEY_LOCA...
- cad2008激活序列号(激活cad的序列号)
-
1.首先运行“AutoCAD2008安装包”中的“Setup.exe”安装AutoCAD2008,安装过程需要十分钟左右;2.第一次运行AutoCAD2008时,请在注册界面输入序列号666-9...
- 自己可以重装电脑系统么(可以自己重装系统吗)
-
电脑自身也可以重装系统。1.电脑是一个可编程的设备,通过特定的步骤和操作,用户可以自行进行系统重装。2.重装系统的过程包括备份重要数据、获取系统安装介质、重新启动电脑进入安装界面、按照指引选择系统...
- 苹果处理器性能排行(苹果处理器性能排行榜平板)
-
1、截止至最新的iPhoneXS上搭载的A12,从iPhone4首次搭载A4处理器开始,目前已经有9代的苹果A系列处理器;2、A4是一颗45nm制程的ARMCortex-A8的单核心处理器,GP...
- 苹果手机怎么录屏(苹果手机怎么录屏在哪里打开)
-
iPhone手机的屏幕录制功能需要在设置里面进行添加,添加成功之后,就可以使用录屏功能了。点击控制中心进入iPhone手机的设置,来到设置之后,找到控制中心选项并点击。点击加号添加录屏功能来到控制中心...
- 电脑怎么打开系统还原(电脑怎么开启系统还原的功能)
-
右键此电脑,属性,系统保护,配置,勾选启用系统保护,确定,创建,输入还原点描述,点击创建,系统提示已成功创建还原点,点击关闭,当需要还原的时候,点击上面的系统还原,选择需要还原的节点,点击完成,即可开...
- ghost系统下载xp(非ghostxp下载)
-
蒲公英系统网站能下载。下载后缀为gho的xp系统,使用体验非常棒效果非常好。以上信息根据美国华盛顿操作系统邮报最新消息显示。不能装钉钉的。在WindowsXP系统上是不能安装钉钉来上网课的。要使用钉...
- 电脑安全模式怎么用(电脑安全模式怎么按出来)
-
1.进入运行输入指令确定键盘上按下win+r组合键,打开运行,输入msconfig,点击确定。2.进引导系统选安全引导进入页面后,点击引导,选中系统,勾选安全引导,点击确定。3.重启进入安全模式弹出...
- win10可选更新(win10可选更新和必要更新)
-
首先确保系统是激活状态。如果不是,可以用小马激活或KMS激活软件等工具激活。1.打开开始菜单,选择“设置”,选择“更新和安全”,设置自动检测安装更新,接受win10推送。电脑接受win10推送后...
- 讯飞语音输入法(讯飞语音输入法电脑版)
-
手机中讯飞语音输入法操作起来非常的简便。我们可以先打开讯飞语音。输入法在输入法键盘上的上端有一个麦克风的标识,我们只要点开麦克风的标识,就可以说话了,上面就会出现相应的文字了。文字可以自动帮我们识别修...
- 电脑品牌型号在哪里看(电脑选什么牌子的好)
-
查看自己电脑品牌型号和具体配置的具体方法:1.右键点击桌面上的“这台电脑”图标,弹出的菜单中选择“属性”。2.在此界面即可看到你的电脑的CPU品牌(AMD)、型号(A6-5200)、频率(2.0GHz...
- 网卡驱动装不上怎么回事(网卡驱动装不了怎么办)
-
可能原因如下1、这种情况是因为系统中没有集成电脑网卡所对应的驱动程序。2、这种情况可以利用鲁大师查询网卡的具体型号,然后去官网或者网络上下载对应的驱动重新安装就可以正常上网了。可能原因如下:1,估计是...
- 一周热门
-
-
飞牛OS入门安装遇到问题,如何解决?
-
如何在 iPhone 和 Android 上恢复已删除的抖音消息
-
Boost高性能并发无锁队列指南:boost::lockfree::queue
-
大模型手册: 保姆级用CherryStudio知识库
-
用什么工具在Win中查看8G大的log文件?
-
如何在 Windows 10 或 11 上通过命令行安装 Node.js 和 NPM
-
威联通NAS安装阿里云盘WebDAV服务并添加到Infuse
-
Trae IDE 如何与 GitHub 无缝对接?
-
idea插件之maven search(工欲善其事,必先利其器)
-
如何修改图片拍摄日期?快速修改图片拍摄日期的6种方法
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
