百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

数据分析库-Pandas

liuian 2025-01-10 15:15 25 浏览

1. Pandas简介


Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算)。

Pandas是一种结构化数据工具集,可以用于数据挖掘、数据分析、数据清洗、数据可视化等。

2. 数据类型

Pandas库最重要的两种数据结构是Series、DataFrame。

Series:一种类似于一维数组的对象, 是由一组Numpy数据及该数据对应的数字序列构成;可以通过该数字序列访问Numpy数据。

DadaFrame:一种表格型的数据结构,是由一组有序的列构成,每一列可以是不同的数据类型,相当于Series数据结构集合;与表格数据类似,DadaFrame数据有行索引和列索引;结合行、列索引可以访问其中单个数据元素。


数据结构

定义

Series

带标签的一维同构数组

DataFrame

带标签、大小可变的二维异构表格


3. Pandas总览


  • 对象生成

生成Series对象和DataFrame对象


函数

实例

pd.Series

pd.Series([1,2,3],index['一','二','三']

pd.DataFrame

pd.DataFrame([[1,2,3],[1,2,3]])


import pandas as pd

pd.Series([1,2,3,4],index=['一','二','三','四']
pd.DataFrame([[1,2,3],[1,2,3]])
  • 数据访问

访问Series对象和DataFrame对象中的数据元素


函数

作用

df.head( )

访问对象头部数据

df.tail( )

访问对象尾部数据

df.describe( )

访问对象的多个统计数据

df.index

访问对象的行索引

df.columns

访问对象的列索引

df.values

访问对象的数据元素

df.loc[ ]

按索引访问对象的数据

df[条件]

通过条件筛选数据

df.isin([ ])

通过条件筛选数据

df.iloc[ ]

按位置访问对象的数据


import pandas as pd

import pandas as pd

df = pd.DataFrame({'公号名':['人类之奴','十点美剧','韩剧剧场','果壳网','十点读书','胖胖啊'],'领域':['科技','影视','影视','科普','阅读','情感'],'粉丝数':[100000,964,1232,543,9990,200],'更新':['日更','周更','日更','月更','周更','日更']})
df.head()
df.tail(1)
df['粉丝数'].describe()
df.index
df.columns
df.values

df.loc[0]
df.loc[:]['公号名']

df.iloc[1:3]
df.iloc[1:4,0:2]

df[df['粉丝数']>9000]
df[df['领域'].isin(['科技'])]
  • 文件读写

Pandas可以读写.csv、.xlsx等常用文件;读取的同时将数据转换成DataFrame数据结构,用于后续处理。


函数

作用

pd.read_csv( )

读取.csv文件

pd.to_csv( )

将数据保存为.csv文件

pd.read_excel( )

读取.xlsx文件

pd.to_excel( )

将数据保存为.xlsx文件

pd.read_hdf( )

读取.h5文件

pd.to_hdf( )

将数据保存为.h5文件


import pandas as pd

path = 'D:\\桌面\\pd0.csv'

#GB18030可以解码包含中文的文件
df_csv = pd.read_csv(path,encoding='GB18030')
df_csv.to_csv('人类之奴.csv')

df_xlsx = pd.read_excel('D:\\桌面\\python包.xlsx',sheet_name=0)
df_xlsx.to_excel('人类之奴.xlsx')

df_hdf = pd.read_hdf('人类之奴.h5')
df_csv.to_hdf('人类之奴.h5','a')
  • 数据清洗

对对象中缺失的、有问题的数据进行处理(删除、填充、替换)。


函数

作用

df.dropna( )

删除有缺失值的数据项

df.fillna( )

填充缺失值


import pandas as pd

df = pd.DataFrame({'公号名':['人类之奴','十点美剧','韩剧剧场','果壳网','十点读书','胖胖啊'],'领域':['科技',None,'影视','科普',None,'情感'],'粉丝数':[100000,964,None,543,9990,200],'更新':['日更','周更','日更','月更','周更','日更']})
df.head()
df.dropna()
df.fillna('科技')
  • 数据处理

数据处理包括数据拼接、数据重排、数据分析等。


函数

作用

pd.concat([ ])

拼接Series/DataFrame对象

pd.merge( )

合并Series/DataFrame对象

pd.join( )

合并Series/DataFrame对象

df.sort_index( )

按索引重排数据

df.sort_values( )

按值重排数据

Numpy方法

Series/DataFrame对象可以调用Numpy方法

df.groupby([ ]).function( )

分组进行function处理

df.apply(function)

对对象整体调用function处理


import pandas as pd
import numpy as np

df1 = pd.DataFrame({'名称':['甲','乙','丙','丁'],'语文':[56,34,67,89]})
df2 = pd.DataFrame({'名称':['甲','乙','丙','丁'],'数学':[98,97,89,35]})

pd.concat([df1,df2],axis=1)
pd.merge(df1,df2)

df = pd.merge(df1,df2)

df.sort_index(1,ascending=False)
df.sort_values(by='数学')

df.groupby(['数学']).mean()
df['数学'].apply(np.median)
  • 数据可视化

对Series/DataFrame对象进行可视化。


函数

作用

pd.plot( )

绘制折线图

pd.plot.hist( )

绘制直方图

pd.plot.scatter( )

绘制散点图


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df1 = pd.DataFrame({'语文':[56,34,67,89]})
df2 = pd.DataFrame({'数学':[98,97,89,35]})

pd.concat([df1,df2],axis=1)
pd.merge(df1,df2)

df.plot()
df.plot.hist()
df.plot.scatter()
#运行出错,没有解决这个问题,希望懂得朋友评论区帮忙解决一下

写在最后

链接:Pandas 中文



相关推荐

总结下SpringData JPA 的常用语法

SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...

解决JPA在多线程中事务无法生效的问题

在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...

PostgreSQL系列(一):数据类型和基本类型转换

自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...

基于MCP实现text2sql

目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...

ORACLE 错误代码及解决办法

ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...

从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%

作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...

010:通过 MCP PostgreSQL 安全访问数据

项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...

发现了一个好用且免费的SQL数据库工具(DBeaver)

缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...

微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅

IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...

数据库管理工具Navicat Premium最新版发布啦

管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...

50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?

北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...

揭秘:一条SQL语句的执行过程是怎么样的?

数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...

各家sql工具,都闹过哪些乐子?

相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...

详解PG数据库管理工具--pgadmin工具、安装部署及相关功能

概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...

Enpass for Mac(跨平台密码管理软件)

还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...