20个Pandas数据实战案例,干货多多
liuian 2025-01-10 15:14 13 浏览
作者:俊欣
来源:关于数据分析与可视化
今天我们讲一下pandas当中的数据过滤内容,小编之前也写过也一篇相类似的文章,但是是基于文本数据的过滤,大家有兴趣也可以去查阅一下。
下面小编会给出大概20个案例来详细说明数据过滤的方法,首先我们先建立要用到的数据集,代码如下
import pandas as pd
df = pd.DataFrame({
"name": ["John","Jane","Emily","Lisa","Matt"],
"note": [92,94,87,82,90],
"profession":["Electrical engineer","Mechanical engineer",
"Data scientist","Accountant","Athlete"],
"date_of_birth":["1998-11-01","2002-08-14","1996-01-12",
"2002-10-24","2004-04-05"],
"group":["A","B","B","A","C"]
})
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
1 Jane 94 Mechanical engineer 2002-08-14 B
2 Emily 87 Data scientist 1996-01-12 B
3 Lisa 82 Accountant 2002-10-24 A
4 Matt 90 Athlete 2004-04-05 C
筛选表格中的若干列
代码如下
df[["name","note"]]
output
name note
0 John 92
1 Jane 94
2 Emily 87
3 Lisa 82
4 Matt 90
再筛选出若干行
我们基于上面搜索出的结果之上,再筛选出若干行,代码如下
df.loc[:3, ["name","note"]]
output
name note
0 John 92
1 Jane 94
2 Emily 87
3 Lisa 82
根据索引来过滤数据
这里我们用到的是iloc方法,代码如下
df.iloc[:3, 2]
output
0 Electrical engineer
1 Mechanical engineer
2 Data scientist
通过比较运算符来筛选数据
df[df.note > 90]
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
1 Jane 94 Mechanical engineer 2002-08-14 B
dt属性接口
dt属性接口是用于处理时间类型的数据的,当然首先我们需要将字符串类型的数据,或者其他类型的数据转换成事件类型的数据,然后再处理,代码如下
df.date_of_birth = df.date_of_birth.astype("datetime64[ns]")
df[df.date_of_birth.dt.month==11]
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
或者我们也可以
df[df.date_of_birth.dt.year > 2000]
output
name note profession date_of_birth group
1 Jane 94 Mechanical engineer 2002-08-14 B
3 Lisa 82 Accountant 2002-10-24 A
4 Matt 90 Athlete 2004-04-05 C
多个条件交集过滤数据
当我们遇上多个条件,并且是交集的情况下过滤数据时,代码应该这么来写
df[(df.date_of_birth.dt.year > 2000) &
(df.profession.str.contains("engineer"))]
output
name note profession date_of_birth group
1 Jane 94 Mechanical engineer 2002-08-14 B
多个条件并集筛选数据
当多个条件是以并集的方式来过滤数据的时候,代码如下
df[(df.note > 90) | (df.profession=="Data scientist")]
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
1 Jane 94 Mechanical engineer 2002-08-14 B
2 Emily 87 Data scientist 1996-01-12 B
Query方法过滤数据
Pandas当中的query方法也可以对数据进行过滤,我们将过滤的条件输入
df.query("note > 90")
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
1 Jane 94 Mechanical engineer 2002-08-14 B
又或者是
df.query("group=='A' and note > 89")
output
name note profession date_of_birth group
0 John 92 Electrical engineer 1998-11-01 A
nsmallest方法过滤数据
pandas当中的nsmallest以及nlargest方法是用来找到数据集当中最大、最小的若干数据,代码如下
df.nsmallest(2, "note")
output
name note profession date_of_birth group
3 Lisa 82 Accountant 2002-10-24 A
2 Emily 87 Data scientist 1996-01-12 B
df.nlargest(2, "note")
output
name note profession date_of_birth group
1 Jane 94 Mechanical engineer 2002-08-14 B
0 John 92 Electrical engineer 1998-11-01 A
isna()方法
isna()方法功能在于过滤出那些是空值的数据,首先我们将表格当中的某些数据设置成空值
df.loc[0, "profession"] = np.nan
df[df.profession.isna()]
output
name note profession date_of_birth group
0 John 92 NaN 1998-11-01 A
notna()方法
notna()方法上面的isna()方法正好相反的功能在于过滤出那些不是空值的数据,代码如下
df[df.profession.notna()]
output
name note profession date_of_birth group
1 Jane 94 Mechanical engineer 2002-08-14 B
2 Emily 87 Data scientist 1996-01-12 B
3 Lisa 82 Accountant 2002-10-24 A
4 Matt 90 Athlete 2004-04-05 C
assign方法
pandas当中的assign方法作用是直接向数据集当中来添加一列
df_1 = df.assign(score=np.random.randint(0,100,size=5))
df_1
output
name note profession date_of_birth group score
0 John 92 Electrical engineer 1998-11-01 A 19
1 Jane 94 Mechanical engineer 2002-08-14 B 84
2 Emily 87 Data scientist 1996-01-12 B 68
3 Lisa 82 Accountant 2002-10-24 A 70
4 Matt 90 Athlete 2004-04-05 C 39
explode方法
explode()方法直译的话,是爆炸的意思,我们经常会遇到这样的数据集
Name Hobby
0 吕布 [打篮球, 玩游戏, 喝奶茶]
1 貂蝉 [敲代码, 看电影]
2 赵云 [听音乐, 健身]
Hobby列当中的每行数据都以列表的形式集中到了一起,而explode()方法则是将这些集中到一起的数据拆开来,代码如下
Name Hobby
0 吕布 打篮球
0 吕布 玩游戏
0 吕布 喝奶茶
1 貂蝉 敲代码
1 貂蝉 看电影
2 赵云 听音乐
2 赵云 健身
当然我们会展开来之后,数据会存在重复的情况,
df.explode('Hobby').drop_duplicates().reset_index(drop=True)
output
Name Hobby
0 吕布 打篮球
1 吕布 玩游戏
2 吕布 喝奶茶
3 貂蝉 敲代码
4 貂蝉 看电影
5 赵云 听音乐
6 赵云 健身
相关推荐
- vue怎么和后端php配合
-
Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...
- Ansible最佳实践之 AWX 使用 Ansible 与 API 通信
-
#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...
- PHP8.3 错误处理革命:Exception 与 Error 全面升级
-
亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...
- 使用 mix/vega + mix/db 进行现代化的原生 PHP 开发
-
最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...
- 15 个非常好用的 JSON 工具
-
JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...
- php8环境原生实现rpc
-
大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...
- 「PHP编程」如何搭建私有Composer包仓库?
-
在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...
- WAF-Bypass之SQL注入绕过思路总结
-
过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...
- 【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant
-
JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...
- 技术分享 | 利用PHAR协议进行PHP反序列化攻击
-
PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...
- php进阶到架构之swoole系列教程(一)windows安装swoole
-
目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...
- go 和 php 性能如何进行对比?
-
PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...
- Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境
-
CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...
- json和jsonp区别
-
JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...
- web后端正确的返回JSON
-
在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)