速学Pandas,10分钟搞定,人人都能掌握的分析方法
liuian 2025-01-10 15:15 23 浏览
毋庸置疑,pandas仍然是数据处理和数据分析最常用的包,其便捷的函数用法和高效的数据处理方法深受从事数据分析相关工作人员的喜爱,极大提高了数据处理的效率。
本文作者将带领大家速学pandas,内容包含安装pandas、数据导入、数据预览、数据排序、辅助运算、分组聚合、数据可视化、数据导出,熟练掌握后可深入学习其他知识点,下面一起来学习。
示例工具:anconda3.7
本文讲解内容:pandas包的使用
适用范围:Python数据处理和分析
安装pandas
使用pandas的功能,需要下载pandas包,Anaconda中打开jupyterNotebook,在代码行中输入如下命令进行下载。
#下载包
!pip install pandas
如网络慢,无法下载,可指定国内源快速下载安装,就是在下载包的命令后加-i,然后添加具体的镜像网址。
#添加镜像网址下载
!pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
安装pands包以后,引入pandas包,起一个别名叫pd,同时查看pandas包的版本,打印结果是1.1.5版本。
# 引入 Pandas库,按惯例起别名pd
import pandas as pd
pd.__version__#打印版本号
数据导入
使用pd.read_excel命令导入本节所使用的数据,数据为某次入学测试成绩,有姓名、班级、总分数等字段,本文基于此分析。
df=pd.read_excel(r'D:\学习\2020年学生测试总成绩.xlsx')
df
数据预览
拿到一组数据以后,我们首先对数据做个预览,看看数据的基本特征,df.head()可以预览前5行数据,df.tail()可以预览后5行数据。
df.head() # 查看头部5条
df.tail() # 查看尾部5条
df.sample(5)随机查看5条数据,括号里的数字可变为其他数字,表示要查看的行数。
df.sample(5) # 随机查看5条
使用df.shape命令查看数据包含的行数和列数,打印结果为(357, 5),表示数据有357行,5列。
df.shape
(357, 5)
使用df.info()命令查看查看索引、数据类型和内存信息,该数据包含姓名、班级等5个字段,其中,除姓名是字符型,其他均为数值型。
df.info()
对数据做基本的描述统计可以有以下特征:
- 数据包含1班到11班共计11个班级的总成绩,有357名学生;
- 平均分359分、最低分18分、最高分621分、中位数是354分、上四分位数是406分、下四分位数是311分;
- 从学校排名来看,中位数是179名,上四分位数是268名、下四分位数是90名;
df.describe().round(0)
使用df.dtypes命令查看数据类型,结果与上面一致,除姓名是字符型,其他均为数值型,字符型只能计数,而数值型可以计数和求和。
df.dtypes
df.axes用来显示数据行和列名,当数据字段比较多的时候,使用此命令对于数据做一个预览。
df.axes
除此之外,还可以使用df.columns命令对数据字段做预览,打印结果与上面一致,包含姓名、班级等5个字段。
df.columns
数据筛选
拿到一组数据,并不是所有的数据都能符合自己的数据分析需要,就要对数据做个筛选,比如筛选出班级中包含1班的姓名和总分数两个字段,可以使用[ ]进行筛选。
df_calss_one=df[df['班级']==1][['姓名','总分数']]
df_calss_one.head()
如果要添加多条件进行筛选,可以使用&符号添加多个筛选条件,比如这里同时筛选班级为1班且总分数大于406分的人,就可以分别作为筛选条件,然后使用&符号连接起来。
df_calss_one_406=df[(df['班级']==1)&(df['总分数']>406)]
df_calss_one_406
数据排序
使用sort_values函数排序,by后面跟排序的字段,默认为升序排列,ascending=False可将字段设为降序排列。
df.sort_values(by='总分数',ascending=False)
如果需要自定义排序,可以将多个字段传入列表[ ]中,ascending用来自定义字段是升序还是降序排列。
df.sort_values(['总分数','班级'],ascending=[False,True])
辅助运算
如果要根据原始数据做一个辅助列进行计算,比如这里求总分数的平均值,使用assign函数添加一个平均值字段进行计算,得出平均值为359分。
df.assign(平均值=df['总分数'].mean())
如果需要对总分数按照分数段分组,我们同样可以添加辅助列,比如这里使用loc函数定位出具体数据,这部分定位出来的数据被赋值具体的分数段,由此得到不同的分数段分组。
df.loc[df['总分数']>=600,'总分评级']='600分以上'
df.loc[df['总分数']<600,'总分评级']='500分-600分'
df.loc[df['总分数']<500,'总分评级']='400分-500分'
df.loc[df['总分数']<400,'总分评级']='300分-400分'
df.loc[df['总分数']<300,'总分评级']='300分以下'
df
分组聚合
分组聚合是数据处理中最常用的一个功能,使用groupby函数,括号内跟分组的对象,中括号中加运算对象,比如这里计算不同分数段的学生人数,由数据可得出分数段在300分到400分的人数最多,有190人。
df.groupby('总分评级')['姓名'].count().reset_index()
如果要对同一个字段做不同的运算,可以使用.agg函数,中括号中可以添加具体需要运算的方法,比如这里分别对每个班的总分数求平均值、最大值和最小值,以1班为例,平均分是439.6分,最高分是582.5分,最小分是324.5分。
df.groupby('班级')['总分数'].agg(['mean','max','min']) .reset_index()
除此之外使用describe()函数可以快速得出描述统计结果。
df.groupby('班级')['总分数'].describe()
如果要对不同字段做不同的运算,比如这里求不同班级的人数和各班的平均分,还是使用.agg函数,但是需要使用一个字典来定义不同的字段使用不同的运算方式,对姓名计数,对总分数求平均,以1班为例共有40人,平均分为439.6分。
df.groupby('班级').agg({'姓名':'count',#班级人数
'总分数': 'mean', # 平均分
}).reset_index()
若要将行列转置,使用.T函数即可迅速转置。
df.groupby('班级')['总分数'].max().reset_index().T
数据可视化
使用图表可以更高效地传达数据信息,如下使用plot.bar() 函数做每个班级最高分的柱形图,可以看出2班的最高分在各班级中最高,10班的最高分在各班级中最低。
df.groupby('班级')['总分数'].max().plot.bar() # 柱状图
同样,使用plot.barh()可以做出条形图。
df.groupby('班级')['总分数'].max().sort_values().plot.barh() # 条形图
使用plot.pie函数可以看每个班级人数在全校中的占比,其中,autopct用来设置数据标签,figsize用来设置图图片的大小,由图可以看出2班和3班的人数占比最多,达11.5%,7班的人数占比最少,仅7.6%。
df.groupby('班级')['姓名'].count().plot.pie(autopct = '%3.1f%%',figsize=(6, 6))
数据导出
将数据分析的数据结果导出到Excel表中,可以使用to_excel函数,如果需要导出到不同的sheet中,需要提前声明一个writer对象,该对象内含导出的路径以及表格名称,将需要导出的数据赋值给变量后即可导出到本地。
如下我们将各分数段学生人数统计、各班级总分数描述统计两个统计结果分别导出到两个sheet表中,index=False表明不显示行索引。
#声明一个对象
writer=pd.ExcelWriter(r'D:\系统桌面(勿删)\Desktop\2020年学生测试总成绩_分析结果.xlsx',engine='xlsxwriter')
#变量赋值
out_table1=df.groupby('总分评级')['姓名'].count().reset_index()
out_table2=df.groupby('班级')['总分数'].agg(['mean','max','min']).reset_index()
#数据导出
out_table1.to_excel(writer,sheet_name='各分数段学生人数统计',index=False)
out_table2.to_excel(writer,sheet_name='各班级总分数描述统计',index=False)
#对象保存
writer.save()
#对象关闭
writer.close()
三年互联网数据分析经验,擅长Excel、SQL、Python、PowerBI数据处理工具,数据可视化、商业数据分析技能,统计学、机器学习知识,持续创作数据分析内容,点赞关注,不迷路。
- 上一篇:数据分析库-Pandas
- 下一篇:Pandas常用操作汇总
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)