百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

10快速入门Query函数使用的Pandas的查询示例

liuian 2025-01-10 15:14 29 浏览

pandas.的query函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。

首先,将数据集导入pandas DataFrame - df

import pandas as pd
df = pd.read_csv("Dummy_Sales_Data_v1.csv")
df.head()

它是一个简单的9999 x 12数据集,是使用Faker创建的,我在最后也会提供本文的所有源代码。

在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。

PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。 因此,它并不具备查询的灵活性。而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。

pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套

在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤pandas DataFrame,需要做的就是在查询函数中指定条件即可。

使用单一条件进行过滤

在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。 返回的输出将包含该表达式评估为真的所有行。

示例1

提取数量为95的所有行,因此逻辑形式中的条件可以写为 -

Quantity == 95

需要将条件写成字符串,即将其包装在双引号“”中。 query代码如下

df.query("Quantity == 95")

看起来很简单。 它返回了数量为95的所有行。如果用一般查询的方式可以写成:

df [df [“Quantity”] == 95]。

但是,如果想在同一列中再包含一个条件怎么办?

它在括号符号中又增加了一对方括号,如果是3个条件或者更多条件呢?那么他就变得难以管理。 这就是Query的优势了。

在多个条件过滤

一个或多个条件下过滤,query()的语法都保持不变

但是需要指定两个或多个条件进行过滤的方式

  • and:回在满足两个条件的所有记录
  • or:返回满足任意条件的所有记录

示例2

查询数量为95&单位价格为182 ,这里包含单价的列被称为UnitPrice(USD)

因此,条件是 -

Quantity == 95
UnitPrice(USD) == 182

那么代码就是:

df.query("Quantity == 95 and UnitPrice(USD) == 182")

这个查询会报错:

但是为什么报错?

这是因为query()函数对列名有一些限制。 列名称UnitPrice(USD)是无效的。我们要使用反引号把列名包含起来

df.query("Quantity == 95 and `UnitPrice(USD)` == 182")

当两个条件满足时,只有3个记录。

或者我们直接将列名改成合理的格式:

df.rename(columns={'UnitPrice(USD)':'UnitPrice', 
'Shipping_Cost(USD)':'Shipping_Cost',
'Delivery_Time(Days)':'Delivery_Time'},
inplace=True)

这里就不需要使用反引号了:

df.query("Quantity == 95 and UnitPrice == 182")

示例3

我们现在只需要满足一个条件:

df.query("Quantity == 95 or UnitPrice == 182")

它返回满足两个条件中的任意一个条件的所有列。

我们也可以使用 | 替代 or关键字。

示例4

假设想获得数量不等于95的所有行。最简单的答案是在条件之前使用not关键字或否定操作符?

df.query("not (Quantity == 95)")

结果它包含数量不是95的所有行。

其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如

df.query("Quantity != 95")

文本列过滤

对于文本列过滤时,条件是列名与字符串进行比较。

请Query()表达式已经是字符串。 那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了

示例5

想获得即状态“未发货”所有记录,可以在query()表达式中写成如下的形式:

df.query("Status == 'Not Shipped'")

它返回所有记录,其中状态列包含值 - “未发货”。

与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。

除此以外, Pandas Query()还可以在查询表达式中使用数学计算

查询中的简单数学计算

数学操作可以是列中的加,减,乘,除,甚至是列中值或者平方等,如下所示:

示例6

df.query("Shipping_Cost*2 < 50")

虽然这个二次方的操作没有任何的实际意义,但是我们的示例返回了所有达到要求的行。

我们还可以在一个或多个列上包含一些复杂的计算。

示例7

我们随便写一个比较复杂的公式:

df.query("Quantity**2 + Shipping_Cost**2 < 500")

如果使用最原始的[]的形式,这个公式的查询基本上没法完成,但是使用query()函数则变为简单的多

除了数学操作,还可以在查询表达式中使用内置函数。

查询中的内置函数

Python内置函数,例如SQRT(),ABS(),Factorial(),EXP()等,也可以在查询表达式中使用。

示例8

查找单位价格平方根的超过15的行

df.query("sqrt(UnitPrice) > 15")

query()函数还可以在同一查询表达式将函数和数学运算整合使用

示例9

df.query("sqrt(UnitPrice) < Shipping_Cost/2")

到目前为止,所有查询示例都是关于数值和文本列的。 但是,query()的还不仅限于这些数据类型,对于日期时间值 Query()函数也可以非常灵活的过滤。

日期时间列过滤

使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns]

在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串,所以我们需要先进行转换:

df["OrderDate"] = pd.to_datetime(df["OrderDate"], format="%Y-%m-%d")

为了提取有关日期的有用信息并在Query()需要使用DT提取器,DT是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

示例10

获得八月份的所有记录

df.query("OrderDate.dt.month == 8")

所有记录都是八月份的。OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。

如果提取2021年8月订购日为15或以上的所有订单,可以写成这样

df.query("OrderDate.dt.month == 8 and OrderDate.dt.year == 2021 and OrderDate.dt.day >=15")

DT很好用并且可以在同一列上结合了多个条件,但表达式似乎太长了。所以可以通过编写更非常简单的表达式来过滤:

df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31'")

我们直接传递一个符合日期格式的字符串,它会自动的转换并且比较

将上面的所有内容整合:

df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31' and Status == 'Delivered'")

查询表达式包含了日期时间和文本列条件,它返回了符合查询表达式的所有记录

替换

上面的查询中都会生成一个新的df。这是因为:query()的第二个参数(inplace)默认false。

与一般的pandas提供的函数一样,Inplace的默认值都是false,查询不会修改原始数据集。 如果我们想覆盖原始df时,需要将intplace = true。但是一定要小心使用intplace = true,因为它会覆盖原始的数据。

总结

我希望在阅读本文后,您可以更频繁,流利地使用Pandas Query()函数,因为Query可以方便以过滤数据集。 这些查询的函数我每天都会或多或少的使用。

相关推荐

Python中的列表详解及示例_python列表讲解

艾瑞巴蒂干货来了,数据列表,骚话没有直接来吧列表(List)是Python中最基本、最常用的数据结构之一,它是一个有序的可变集合,可以包含任意类型的元素。列表的基本特性有序集合:元素按插入顺序存储可变...

PowerShell一次性替换多个文件的名称

告别繁琐的文件重命名,使用PowerShell语言批量修改文件夹中的文件名,让您轻松完成重命名任务在日常工作中,我们经常需要对大量文件进行重命名,以便更好地管理和组织。之前,我们曾介绍过使用Pytho...

小白必看!Python 六大数据类型增删改查秘籍,附超详细代码解析

在Python中,数据类型可分为可变类型(如列表、字典、集合)和不可变类型(如字符串、元组、数值)。下面针对不同数据类型详细讲解其增删改查操作,并给出代码示例、输出结果及分析总结。1.列表(Li...

python数据容器之列表、元组、字符串

数据容器分为5类,分别是:列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)list#字面量[元素1,元素2,元素3,……]#定义变量变量名称=[元素1,元素...

python列表(List)必会的13个核心技巧(附实用方法)

列表(List)是Python入门的关键步骤,因为它是编程中最常用的数据结构之一。以下是高效掌握列表的核心技巧和实用方法:一、理解列表的本质可变有序集合:可随时修改内容,保持元素顺序混合类型:一个列表...

如何利用python批量修改文件名_python如何对文件进行批量命名

很多语言都可以做到批量修改文件名,今天我就给大家接受一下Python的方法,首选上需求。图片中有10个txt文件,现在我需要在这些文件名的前面全部加一个“学生”,可以吗?见证奇迹的时刻到了。我是怎么做...

Python中使用re模块实现正则表达式的替换字符串操作

#编程语言#我是"学海无涯自学不惜!",关注我,一同学习简单易懂的Python编程。0基础学python(83)Python中,导入re模块后还可以进行字符串的替换操作,就是sub()...

python列表十大常见问题,你遇到第几个?

Python列表常见问题及解决方案1.修改列表时的常见陷阱问题:在遍历时修改列表#错误做法:在遍历时删除元素会导致意外结果numbers=[1,2,3,4,5,6]forn...

python入门007:编辑列表_python列表怎么写入文件

一、列表的编辑操作列表创建后,随着程序的运行,可以通过对列表元素的增删改操作来编辑列表。1、修改列表元素的值修改列表元素的操作方法与访问列表元素的方法类似。例如,要修改列表元素的值,先指定列表及元素...

Python教程:在python中修改元组详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中修改元组详解》。本知识点主要内容有:在Python中直接使用赋值运算符“=”给元组重新赋值、在Python中使用加赋值运...

Python列表(List)一文全掌握:核心知识点+20实战练习题

Python列表(List)知识点教程一、列表的定义与特性定义:列表是可变的有序集合,用方括号[]定义,元素用逗号分隔。list1=[1,"apple",3.14]lis...

Python教程-列表复制_python对列表进行复制

作为软件开发者,我们总是努力编写干净、简洁、高效的代码。Python列表是一种多功能的数据结构,它允许你存储一个项目的集合。在Python中,列表是可变的,这意味着你可以在创建一个列表后改变它的...

Python入门学习教程:第 6 章 列表

6.1什么是列表?在Python中,列表(List)是一种用于存储多个元素的有序集合,它是最常用的数据结构之一。列表中的元素可以是不同的数据类型,如整数、字符串、浮点数,甚至可以是另一个列表。列...

Python列表、元组、字典和集合_python中的列表元组和字典

Python中的列表(List)、元组(Tuple)、字典(Dict)和集合(Set)是四种最常用的核心数据结构。掌握它们的基础操作只是第一步,真正发挥威力的是那些高级用法和技巧。首先我们先看一下这...

学习编程第167天 python编程 使用format方法灵活替换字符串

今天学习的是刘金玉老师零基础Python教程第51期,主要内容是python编程使用format方法灵活替换字符串。一、format方法(一)format方法是字符串自带的方法,使用的format方法...