百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas表格样式设置,超好看! pandas table

liuian 2024-12-20 17:19 73 浏览

今天给大家介绍如何给Pandas DataFrame添加颜色和样式。

通过这一方法,增强数据的呈现,使信息的探索和理解不仅内容丰富,而且具有视觉吸引力。

Pandas Styler是Pandas库中的一个模块,它提供了创建DataFrame的HTML样式表示的方法。

此功能允许在可视化期间自定义DataFrame的视觉外观。Pandas Styler的核心功能在于能够根据特定条件对单元格进行突出显示、着色和格式化。

增强了可视化体验,并能够更直观地解释数据集中包含的信息。

接下来,我们将使用一组数据创建一个数据透视表,为其提供不同的样式和条件格式,最终如上图所示。

数据透视表是一种表格数据结构,它提供来自另一个表的信息的汇总概述,根据一个变量组织数据并显示与另一个变量关联的值。

在本次分析中,我们将使用Apple Store应用程序数据集来探索数据透视表的创建和表格样式的自定义。

数据集涵盖从应用程序名称到大小、价格和评级等细节的各个方面。我们的目标是有效地分解信息,同时应用有效增强数据呈现和理解的风格。

数据说明。

查看环境基础信息。

import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import warnings

# 关闭pandas warning
warnings.filterwarnings('ignore')
print("Python Libraries version:")
print(' - '*20)
print("Pandas version: ", pd.__version__)
print("Numpy version: ", np.__version__)
print("Matplotlib version: ", plt.matplotlib.__version__)

结果如下。

读取数据。

# 读取数据
path='data/AppleStore.csv'
data =pd.read_csv(path,sep=';')

创建数据透视表。

# 过滤数据,只保留前15个类型
top_genre = data.value_counts('prime_genre')[:15].index.tolist()
tmp = data.loc[data['prime_genre'].isin(top_genre),['prime_genre','user_rating','price']]

# 创建一个新列,将评级四舍五入到最接近的整数
tmp['user_rating'] = [f'rating_{str(math.trunc(item))}' for item in tmp['user_rating']]

# 创建数据透视表
tmp_pivot = (
 pd.pivot_table(
 data = tmp,
 columns='user_rating',
 index='prime_genre',
 values='price',
 aggfunc='mean',
 fill_value=0
 ).reset_index().round(2)
)

# 重命名列
tmp_pivot.columns.name=''
# 打印透视表
tmp_pivot

结果如下。

现在我们将探索Pandas中的“style”模块,它使我们能够增强DataFrame的视觉呈现。“style”模块提供了不同的选项来修改数据的外观,允许我们自定义以下方面:

给单元格着色:根据单元格值或条件应用不同的颜色。

突出显示:强调特定的行、列或值。

格式:调整显示值的格式,包括精度和对齐方式。

条形图:在单元格内用水平或垂直条形图表示数据。

样式:设置标题的背景颜色

在本节中,我们将应用样式到标题和表格。因此,我们使用背景颜色来突出显示标题和表格的其余部分。

# 更改列的背景颜色
headers = {
 'selector': 'th.col_heading',
 'props': 'background-color: #5E17EB; color: white;'
}
index_style = {
 'selector': 'th.index_name',
 'props': 'background-color: #5E17EB; color: white;'
}
tmp_pivot_style = (
 tmp_pivot
 .style
 .set_table_styles([headers,index_style])
 .set_properties(**{'background-color': '#ECE3FF','color': 'black'})
)
tmp_pivot_style

样式:设置特定单元格的背景颜色

下面的代码片段说明了如何使用pandas样式为DataFrame中的特定单元格设置自定义背景颜色。

(
   tmp_pivot
   .style
   .set_table_styles([headers, index_style])
   .set_properties(**{'background-color': '#ECE3FF', 'color': 'black'})
   .set_properties(**{'background-color': '#FD636B', 'color': 'white'},subset=pd.IndexSlice[4, 'rating_5'])
)

样式:设置数据框中最大/最小值的背景颜色

现在,我们将重点突出显示DataFrame中的最大值和最小值。因此,我们将为这些极值分配独特的背景颜色,以便于更快、更直观地理解数据集。下面的代码片段演示了如何实现这种风格增强。

# 选择'rating_'开头的列
columns = tmp_pivot.columns[tmp_pivot.columns.str.startswith('rating_')]

# 获取最大、最小值
max_value = tmp_pivot[columns].max().max()
min_value = tmp_pivot[columns].min().min()
# 最大值样式
max_style = f'border: 4px solid #3BE8B0 !important;'
# 最小值样式
min_style = f'background-color: #FF66C4; '
(
 tmp_pivot
 .style
 .set_table_styles([headers, index_style])
 .set_properties(**{'background-color': '#ECE3FF', 'color': 'black'})
 .set_properties(**{'background-color': '#FD636B', 'color': 'white'}, subset=pd.IndexSlice[4, 'rating_5'])
 .applymap(lambda x: max_style if x == max_value else '')
 .applymap(lambda x: min_style if x == min_value else '', subset=columns)
)

风格:颜色背景渐变

在接下来的部分中,我们将深入研究颜色图的概念,它表示以渐变方式排列的颜色光谱。颜色图本质上是一个颜色调色板,由独特的名称组成,最流行的名称是['viridis'、'magma'、'Greens'、'Reds']。

创建这些色谱的主要目的是增强数据的视觉表示。渐变中的每种颜色都具有特定的细微差别,有助于提供更细致的数据可视化体验。

对于广泛的颜色选项,您可以浏览matplotlib colormaps链接。

https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

import matplotlib.pyplot as plt
import numpy as np

# 定义颜色映射
for cmap_item in ['viridis', 'magma','Greens','Reds']:
 cmap = plt.get_cmap(cmap_item)
 # 创建颜色渐变
 gradient = np.linspace(0, 1, 256).reshape(1, -1)
 # 显示调色板
 plt.figure(figsize=(10, 0.2))
 plt.imshow(gradient, aspect='auto', cmap=cmap)
 plt.axis('off')
 plt.title(f'{cmap_item.capitalize()} Color Palette', loc='left', fontsize=9)
 plt.show()

Viridis调色板。现在,我们将向数据透视表应用颜色渐变,以便可以使用Viridis调色板观察它的着色方式。在这种情况下,较浅的颜色表示分布中较大的值,而较深的阴影对应于分布中较小的值。这种方法提供了一种视觉表示,可以直观地传达数据的大小,从而更容易辨别数据集中的模式和变化。

plt.get_cmap( 'viridis' ,lut= 20 )
( 
tmp_pivot 
.style 
.set_table_styles([headers, index_style]) 
.background_gradient(cmap= 'viridis' ,subset=columns) 
)

风格:列中的彩色背景

在下一个代码块中,我们将通过向特定列引入不同的颜色背景来增强数据透视表的视觉表示。此技术有助于更好地突出显示数据并对其进行分类,从而更轻松地从表格中获取见解。

(
 tmp_pivot
 .style
 .set_table_styles([headers, index_style])
 .set_properties(**{'background-color': '#FFCFC9','color':'black'},subset=['rating_0','rating_1'])
 .set_properties(**{'background-color': '#FFF1B0','color':'black'},subset=['rating_2','rating_3'])
 .set_properties(**{'background-color': '#BEEAE5','color':'black'},subset=['rating_4','rating_5'])
)

风格:彩条

在本节中,我们将实现style.bar函数以将动态颜色条引入到我们的DataFrame中。颜色条提供数据值的直观表示,为不同的数据范围分配不同的颜色。

(
 tmp_pivot
 .style
 .set_table_styles([headers, index_style])
 .set_properties(**{'background-color': '#ECE3FF', 'color': 'black'})
 .set_properties(**{'background-color': 'white','color':'black'},subset=columns)
 .bar(color='#FFCFC9',subset=['rating_0','rating_1'])
 .bar(color='#FFF1B0',subset=['rating_2','rating_3'])
 .bar(color='#BEEAE5',subset=['rating_4','rating_5'])
)

风格:分列图像

在本节中,我们将通过向附加列添加图像来探索数据表示的增强。这种方法提供了一种替代方法来提升所呈现数据的视觉效果。这些图像可以作为图标、代表品牌或传达额外的视觉元素来吸引和吸引观众。

# 创建一个函数,根据类型将图像添加到dataframe
def add_image(image_name):
 img_url = f"img/icons/img_{image_name}.png"
 width = "width: 50px"
 height = "height: 50px"
 text_align ="center"
 return f'{width};{height}; content: url({img_url}); text-align:{text_align}'

# 将函数应用于dataframe
styled_df = (
 tmp_pivot
 .head(5)
 .reset_index()
 .rename({'index': 'genre'}, axis=1)
 .style.applymap(add_image, subset=pd.IndexSlice[:, ['genre']])
 .set_table_styles([headers, index_style])
 .set_properties(**{'background-color': '#ECE3FF', 'color': 'black'})
)

# 显示带有图像的dataframe
display(styled_df)

风格:基于百分位数的表情符号表示

在本节中,我们将深入研究基于百分位值的表情符号的创造性使用,提供一种独特的方法来提升数据表示。通过整合不同的表情符号,我们增强了数据的视觉冲击力。具体来说,我们使用圆圈和小队作为表情符号,为我们的数据点带来微妙的表达。

def get_percentiles(row_data, bins=3, emoji='circle'):
    emoji_labels = {
        'circle': {3: ['', '', ''], 
                   4: ['', '', '', '']},
        'squad': {3: ['', '', ''], 
                  4: ['', '', '', '']}
    }

    if emoji in ['max', 'min', 'min_max']:
        return create_series(row_data, emoji)
    elif emoji in emoji_labels and bins in emoji_labels[emoji]:
        labels = emoji_labels[emoji][bins]
        return pd.cut(row_data, bins=len(labels), labels=labels, ordered=False)
    else:
        return row_data

def create_series(row_data, emoji):
    if emoji == 'max':
        return pd.Series(['' if item == row_data.max() else '?' for item in row_data])
    elif emoji == 'min':
        return pd.Series(['' if item == row_data.min() else '?' for item in row_data])
    elif emoji == 'min_max':
        return pd.Series(['' if item == row_data.min() else '' if item == row_data.max() else '?' for item in row_data])

def get_conditional_table_column(data, bins=3, emoji='circle'):
    tmp = data.copy()
    for column in data.columns:
        if pd.api.types.is_numeric_dtype(data[column]):
            row_data_emoji = get_percentiles(data[column], bins, emoji).astype(str)
            tmp[column] = data[column].astype(str) + ' ' + row_data_emoji
    return tmp

def get_conditional_table_row(data, bins=3, emoji='circle'):
    response_values = []
    column_str = [item for item in data.columns if data[item].dtypes not in ['int64', 'float64']]
    columns_num = [item for item in data.columns if data[item].dtypes in ['int64', 'float64']]

    for row in range(data.shape[0]):
        row_data = data.loc[row, columns_num]
        percentil = get_percentiles(row_data, bins, emoji)
        row_data = row_data.apply(lambda x: '{:.2f}'.format(x))
        percentil_values = [str(row_data[item]) + ' ' + percentil[item] for item in range(percentil.shape[0])]
        response_values.append(percentil_values)

    result_df = pd.DataFrame(response_values).round(2)
    result_df.columns = columns_num
    result_df = pd.concat([data[column_str], result_df], axis=1)
    return result_df


# 按列条件筛选
get_conditional_table_row(data=tmp_pivot,emoji='min_max')

# 最小值
get_conditional_table_column(data=tmp_pivot,emoji='min')

# 最大值
get_conditional_table_column(data=tmp_pivot,emoji='max')

# 4分类
get_conditional_table_column(data=tmp_pivot,emoji='circle',bins=4)

相关推荐

wifi密码破解器电脑版(wifi密码破解工具电脑版)

肯定不是万能钥匙这种“破解”wifi的东西。不是一两次见到把万能钥匙当做破解wifi用的人了,但实际上那玩意就是个分享wifi的软件。你连上一个wifi,密码就会被分享到云端(可以不分享),别...

手机临时文件夹在哪个位置(手机临时文件夹在哪个位置找)

1.手机文件临时文件是指在手机使用过程中产生的临时文件。2.手机应用程序在运行时需要产生一些临时文件,如缓存文件、日志文件、临时下载文件等,这些文件可以提高应用程序的运行效率和用户体验。但是,这些...

安卓10系统下载(安卓10 下载)

方法及步骤:  其实使用安卓车机下载歌曲的方法十分的简单,具体操作步骤和安卓手机一模一样。  首先我们需要在车机的应用商店上,下载一个音乐播放器,例如网易云音乐或者QQ音乐等。  下载完成后点击进入...

华硕人工客服24小时吗(华硕售后人工客服)

华硕服务中心广东省惠州市惠东县城平深路(创富斜对面)惠东同心电脑城1L11(1.3km)笔记本电脑,平板电脑华硕服务中心广东省惠州市惠东县平山镇同心电脑城1F26(1.3km)笔记本电脑,平...

电脑音量小喇叭不见了(电脑声音喇叭图标不见了怎么办)

如果您电脑上的小喇叭(扬声器)不见了,可以尝试以下方法找回:1.检查设备管理器:在Windows下,右键点击“我的电脑”(或此电脑)->点击“属性”->点击“设备管理器”,查看“声音、视...

腾达路由器手机设置教程(腾达路由器手机设置教程视频)

用手机设置腾达路由器的方法如下:1在手机上打开浏览器,输入路由器背面的管理IP和用户及对应的密码2一般第一次打开,默认会跳出设置向导,准备好宽带用户名和密码,3按向导提示输入相应内容4在无线设置的安全...

自配电脑配置推荐(自配电脑配置推荐百度)

首先,像这类软件最低要求不高。最高没上限。纯粹看你的工程量大小。CPU有双核,内存有4G,就可以运行。但是实际体验肯定比较差,卡是肯德。渲染时间也会超长,一个小作品渲染几小时是正常的。稍微大点的工程也...

2025年平板性价比排行(2020年值得买的平板)

推荐台电P30S好。 基本配置:10.1英寸IPS广视角屏幕,1280*800分辨率,16:10的黄金显示比例,K9高压独立功放,支持3.5mm耳麦接口,联发科MT8183八核处理器,4GB...

2020显卡天梯图10月(2020显卡天梯图极速空间)

排行球队名称积分已赛胜平负进球失球净胜球  1?诺维奇城974629107753639 2?沃特福德91462710...

路由器加密防蹭网(路由器加密防蹭网吗)
  • 路由器加密防蹭网(路由器加密防蹭网吗)
  • 路由器加密防蹭网(路由器加密防蹭网吗)
  • 路由器加密防蹭网(路由器加密防蹭网吗)
  • 路由器加密防蹭网(路由器加密防蹭网吗)
笔记本电脑无线网络连接(笔记本电脑无线网络连接不上怎么办)
笔记本电脑无线网络连接(笔记本电脑无线网络连接不上怎么办)

一、笔记本电脑怎么连接wifi---win7系统笔记本连接wifi1、要先创建无线网络连接,将鼠标移到Win7的开始菜单,然后点击“控制面板”。2、然后点击“网络和Internet”。3、再打开“网络和共享中心”,这是Win7系统必有的功...

2025-12-22 05:55 liuian

wind数据库(wind数据库官网)

先购买wind数据库,安装好wind取得使用权后,按照wind所给提示,输入账户和密码可使用wind数据库。Wind资讯金融终端是一个集实时行情、资料查询、数据浏览、研究分析、新闻资讯为一体的金融数据...

如何关闭360家庭防火墙(如果关闭360家庭防火墙)

关闭方法如下:1.打开手机360主界面之后,点击“安全防护中心”。2.点击第三列“入口防护”下方的“查看状态”按钮。3.在列出的功能项中找到“局域网防护”,直接点击后面的“关闭”按钮,关闭所有的“局域...

笔记本电脑型号配置怎么看(怎么查自己电脑的型号)

查电脑的配置和型号方法:方法一:1、右键单击“此电脑”,点击属性2、这里可以看到操作系统,CPU等大致信息3、点击设备管理器4、这里可以查看具体硬件的详细信方法二:1、首先打开电脑上的“控制面板”2、...

pscs6序列号是什么

AdobePhotoshopCS6就二个版本(测试版和正式版)1、AdobePhotoshopCS6是AdobePhotoshop的第13代,是一个较为重大的版本更新。2、Photoshop在前几...