Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能
liuian 2024-12-20 17:19 73 浏览
作者:俊欣
来源:关于数据分析与可视化
今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如
- 提高预测的精准度
- 降低过拟合的风险
- 加快模型的训练速度
- 增加模型的可解释性
事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出,
因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变量以及离散型的变量来讨论,毕竟不同数据类型的变量处理的方式不同,我们先来看一下对于连续型的变量而言,特征选择到底是怎么来进行的。
计算一下各个变量之间的相关性
我们先导入所需要用到的模块以及导入数据集,并且用pandas模块来读取
from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
这次用到的数据集是机器学习中尤其是初学者经常碰到的,波士顿房价的数据集,其中我们要预测的这个对象是MEDV这一列
x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1) #将模型当中要用到的特征变量保留下来
y = df["MEDV"] #最后要预测的对象
df.head()
output
CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B LSTAT MEDV
0 0.00632 18.0 2.31 0.0 0.538 ... 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 ... 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 ... 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 ... 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 ... 222.0 18.7 396.90 5.33 36.2
我们可以来看一下特征变量的数据类型
df.dtypes
output
CRIM float64
ZN float64
INDUS float64
CHAS float64
NOX float64
RM float64
AGE float64
DIS float64
RAD float64
TAX float64
PTRATIO float64
B float64
LSTAT float64
MEDV float64
dtype: object
我们看到都是清一色的连续型的变量,我们来计算一下自变量和因变量之间的相关性,通过seaborn模块当中的热力图来展示,代码如下
plt.figure(figsize=(10,8))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()
相关系数的值一般是在-1到1这个区间内波动的
- 相关系数要是接近于0意味着变量之间的相关性并不强
- 接近于-1意味着变量之间呈负相关的关系
- 接近于1意味着变量之间呈正相关的关系
我们来看一下对于因变量而言,相关性比较高的自变量有哪些
# 筛选出于因变量之间的相关性
cor_target = abs(cor["MEDV"])
# 挑选于大于0.5的相关性系数
relevant_features = cor_target[cor_target>0.5]
relevant_features
output
RM 0.695360
PTRATIO 0.507787
LSTAT 0.737663
MEDV 1.000000
Name: MEDV, dtype: float64
筛选出3个相关性比较大的自变量来,然后我们来看一下自变量之间的相关性如何,要是自变量之间的相关性非常强的话,我们也只需要保留其中的一个就行,
print(df[["LSTAT","PTRATIO"]].corr())
print("=" * 50)
print(df[["RM","LSTAT"]].corr())
print("=" * 50)
print(df[["PTRATIO","RM"]].corr())
output
LSTAT PTRATIO
LSTAT 1.000000 0.374044
PTRATIO 0.374044 1.000000
==================================================
RM LSTAT
RM 1.000000 -0.613808
LSTAT -0.613808 1.000000
==================================================
PTRATIO RM
PTRATIO 1.000000 -0.355501
RM -0.355501 1.000000
从上面的结果中我们可以看到,RM变量和LSTAT这个变量是相关性是比较高的,我们只需要保留其中一个就可以了,我们选择保留LSTAT这个变量,因为它与因变量之间的相关性更加高一些
递归消除法
我们可以尝试这么一种策略,我们选择一个基准模型,起初将所有的特征变量传进去,我们再确认模型性能的同时通过对特征变量的重要性进行排序,去掉不重要的特征变量,然后不断地重复上面的过程直到达到所需数量的要选择的特征变量。
LR= LinearRegression()
# 挑选出7个相关的变量
rfe_model = RFE(model, 7)
# 交给模型去进行拟合
X_rfe = rfe_model.fit_transform(X,y)
LR.fit(X_rfe,y)
# 输出各个变量是否是相关的,并且对其进行排序
print(rfe_model.support_)
print(rfe_model.ranking_)
output
[False False False True True True False True True False True False
True]
[2 4 3 1 1 1 7 1 1 5 1 6 1]
第一行的输出包含True和False,其中True代表的是相关的变量对应下一行的输出中的1,而False包含的是不相关的变量,然后我们需要所需要多少个特征变量,才能够使得模型的性能达到最优
#将13个特征变量都依次遍历一遍
feature_num_list=np.arange(1,13)
# 定义一个准确率
high_score=0
# 最优需要多少个特征变量
num_of_features=0
score_list =[]
for n in range(len(feature_num_list)):
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 0)
model = LinearRegression()
rfe_model = RFE(model,feature_num_list[n])
X_train_rfe_model = rfe_model.fit_transform(X_train,y_train)
X_test_rfe_model = rfe_model.transform(X_test)
model.fit(X_train_rfe_model,y_train)
score = model.score(X_test_rfe_model,y_test)
score_list.append(score)
if(score>high_score):
high_score = score
num_of_features = feature_num_list[n]
print("最优的变量是: %d个" %num_of_features)
print("%d个变量的准确率为: %f" % (num_of_features, high_score))
output
最优的变量是: 10个
10个变量的准确率为: 0.663581
从上面的结果可以看出10个变量对于整个模型来说是最优的,然后我们来看一下到底是哪10个特征变量
cols = list(X.columns)
model = LinearRegression()
# 初始化RFE模型,筛选出10个变量
rfe_model = RFE(model, 10)
X_rfe = rfe.fit_transform(X,y)
# 拟合训练模型
model.fit(X_rfe,y)
df = pd.Series(rfe.support_,index = cols)
selected_features = df[df==True].index
print(selected_features)
output
Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'PTRATIO',
'LSTAT'],
dtype='object')
正则化
例如对于Lasso的正则化而言,对于不相关的特征而言,该算法会让其相关系数变为0,因此不相关的特征变量很快就会被排除掉了,只剩下相关的特征变量
lasso = LassoCV()
lasso.fit(X, y)
coef = pd.Series(lasso.coef_, index = X.columns)
然后我们看一下哪些变量的相关系数是0
print("Lasso算法挑选了 " + str(sum(coef != 0)) + " 个变量,然后去除掉了" + str(sum(coef == 0)) + "个变量")
output
Lasso算法挑选了10个变量,然后去除掉了3个变量
我们来对计算出来的相关性系数排个序并且做一个可视化
imp_coef = coef.sort_values()
matplotlib.rcParams['figure.figsize'] = (8, 6)
imp_coef.plot(kind = "barh")
plt.title("Lasso Model Feature Importance")
output
可以看到当中有3个特征,‘NOX’、'CHAS'、'INDUS'的相关性为0
根据缺失值来进行判断
下面我们来看一下如何针对离散型的特征变量来做处理,首先我们可以根据缺失值的比重来进行判断,要是对于一个离散型的特征变量而言,绝大部分的值都是缺失的,那这个特征变量也就没有存在的必要了,我们可以针对这个思路在进行判断。
首先导入所需要用到的数据集
train = pd.read_csv("credit_example.csv")
train_labels = train['TARGET']
train = train.drop(columns = ['TARGET'])
我们可以先来计算一下数据集当中每个特征变量缺失值的比重
missing_series = train.isnull().sum() / train.shape[0]
df = pd.DataFrame(missing_series).rename(columns = {'index': '特征变量', 0: '缺失值比重'})
df.sort_values("缺失值比重", ascending = False).head()
output
缺失值比重
COMMONAREA_AVG 0.6953
COMMONAREA_MODE 0.6953
COMMONAREA_MEDI 0.6953
NONLIVINGAPARTMENTS_AVG 0.6945
NONLIVINGAPARTMENTS_MODE 0.6945
我们可以看到缺失值最高的比重将近有70%,我们也可以用可视化的根据来绘制一下缺失值比重的分布图
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize = (7, 5))
plt.hist(df['缺失值比重'], bins = np.linspace(0, 1, 11), edgecolor = 'k', color = 'blue', linewidth = 2)
plt.xticks(np.linspace(0, 1, 11));
plt.xlabel('缺失值的比重', size = 14);
plt.ylabel('特征变量的数量', size = 14);
plt.title("缺失值分布图", size = 14);
output
我们可以看到有一部分特征变量,它们缺失值的比重在50%以上,有一些还在60%以上,我们可以去除掉当中的部分特征变量
计算特征的重要性
在基于树的众多模型当中,会去计算每个特征变量的重要性,也就是feature_importances_属性,得出各个特征变量的重要性程度之后再进行特征的筛选
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
# 模型拟合数据
clf.fit(X,Y)
feat_importances = pd.Series(clf.feature_importances_, index=X.columns)
# 筛选出特征的重要性程度最大的10个特征
feat_importances.nlargest(10)
我们同时也可以对特征的重要性程度进行可视化,
feat_importances.nlargest(10).plot(kind='barh', figsize = (8, 6))
output
除了随机森林之外,基于树的算法模型还有很多,如LightGBM、XGBoost等等,大家也都可以通过对特征重要性的计算来进行特征的筛选
Select_K_Best算法
在Sklearn模块当中还提供了SelectKBest的API,针对回归问题或者是分类问题,我们挑选合适的模型评估指标,然后设定K值也就是既定的特征变量的数量,进行特征的筛选。
假定我们要处理的是分类问题的特征筛选,我们用到的是iris数据集
iris_data = load_iris()
x = iris_data.data
y = iris_data.target
print("数据集的行与列的数量: ", x.shape)
output
数据集的行与列的数量: (150, 4)
对于分类问题,我们采用的评估指标是卡方,假设我们要挑选出3个对于模型最佳性能而言的特征变量,因此我们将K设置成3
select = SelectKBest(score_func=chi2, k=3)
# 拟合数据
z = select.fit_transform(x,y)
filter_1 = select.get_support()
features = array(iris.feature_names)
print("所有的特征: ", features)
print("筛选出来最优的特征是: ", features[filter_1])
output
所有的特征: ['sepal length (cm)' 'sepal width (cm)' 'petal length (cm)'
'petal width (cm)']
筛选出来最优的特征是: ['sepal length (cm)' 'petal length (cm)' 'petal width (cm)']
那么对于回归的问题而言,我们可以选择上面波士顿房价的例子,同理我们想要筛选出对于模型最佳的性能而言的7个特征变量,同时对于回归问题的评估指标用的是f_regression
boston_data = load_boston()
x = boston_data.data
y = boston_data.target
然后我们将拟合数据,并且进行特征变量的筛选
select_regression = SelectKBest(score_func=f_regression, k=7)
z = select_regression.fit_transform(x, y)
filter_2 = select_regression.get_support()
features_regression = array(boston_data.feature_names)
print("所有的特征变量有:")
print(features_regression)
print("筛选出来的7个特征变量则是:")
print(features_regression[filter_2])
output
所有的特征变量有:
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
'B' 'LSTAT']
筛选出来的7个特征变量则是:
['CRIM' 'INDUS' 'NOX' 'RM' 'TAX' 'PTRATIO' 'LSTAT']
相关推荐
-
- 驱动网卡(怎么从新驱动网卡)
-
网卡一般是指为电脑主机提供有线无线网络功能的适配器。而网卡驱动指的就是电脑连接识别这些网卡型号的桥梁。网卡只有打上了网卡驱动才能正常使用。并不是说所有的网卡一插到电脑上面就能进行数据传输了,他都需要里面芯片组的驱动文件才能支持他进行数据传输...
-
2026-01-30 00:37 liuian
- win10更新助手装系统(微软win10更新助手)
-
1、点击首页“系统升级”的按钮,给出弹框,告诉用户需要上传IMEI码才能使用升级服务。同时给出同意和取消按钮。华为手机助手2、点击同意,则进入到“系统升级”功能华为手机助手华为手机助手3、在检测界面,...
- windows11专业版密钥最新(windows11专业版激活码永久)
-
Windows11专业版的正版密钥,我们是对windows的激活所必备的工具。该密钥我们可以通过微软商城或者通过计算机的硬件供应商去购买获得。获得了windows11专业版的正版密钥后,我...
-
- 手机删过的软件恢复(手机删除过的软件怎么恢复)
-
操作步骤:1、首先,我们需要先打开手机。然后在许多图标中找到带有[文件管理]文本的图标,然后单击“文件管理”进入页面。2、进入页面后,我们将在顶部看到一行文本:手机,最新信息,文档,视频,图片,音乐,收藏,最后是我们正在寻找的[更多],单击...
-
2026-01-29 23:55 liuian
- 一键ghost手动备份系统步骤(一键ghost 备份)
-
步骤1、首先把装有一键GHOST装系统的U盘插在电脑上,然后打开电脑马上按F2或DEL键入BIOS界面,然后就选择BOOT打USDHDD模式选择好,然后按F10键保存,电脑就会马上重启。 步骤...
- 怎么创建局域网(怎么创建局域网打游戏)
-
1、购买路由器一台。进入路由器把dhcp功能打开 2、购买一台交换机。从路由器lan端口拉出一条网线查到交换机的任意一个端口上。 3、两台以上电脑。从交换机任意端口拉出网线插到电脑上(电脑设置...
- 精灵驱动器官方下载(精灵驱动手机版下载)
-
是的。驱动精灵是一款集驱动管理和硬件检测于一体的、专业级的驱动管理和维护工具。驱动精灵为用户提供驱动备份、恢复、安装、删除、在线更新等实用功能。1、全新驱动精灵2012引擎,大幅提升硬件和驱动辨识能力...
- 一键还原系统步骤(一键还原系统有哪些)
-
1、首先需要下载安装一下Windows一键还原程序,在安装程序窗口中,点击“下一步”,弹出“用户许可协议”窗口,选择“我同意该许可协议的条款”,并点击“下一步”。 2、在弹出的“准备安装”窗口中,可...
- 电脑加速器哪个好(电脑加速器哪款好)
-
我认为pp加速器最好用,飞速土豆太懒,急速酷六根本不工作。pp加速器什么网页都加速,太任劳任怨了!以上是个人观点,具体性能请自己试。ps:我家电脑性能很好。迅游加速盒子是可以加速电脑的。因为有过之...
- 任何u盘都可以做启动盘吗(u盘必须做成启动盘才能装系统吗)
-
是的,需要注意,U盘的大小要在4G以上,最好是8G以上,因为启动盘里面需要装系统,内存小的话,不能用来安装系统。内存卡或者U盘或者移动硬盘都可以用来做启动盘安装系统。普通的U盘就可以,不过最好U盘...
- u盘怎么恢复文件(u盘文件恢复的方法)
-
开360安全卫士,点击上面的“功能大全”。点击文件恢复然后点击“数据”下的“文件恢复”功能。选择驱动接着选择需要恢复的驱动,选择接入的U盘。点击开始扫描选好就点击中间的“开始扫描”,开始扫描U盘数据。...
- 系统虚拟内存太低怎么办(系统虚拟内存占用过高什么原因)
-
1.检查系统虚拟内存使用情况,如果发现有大量的空闲内存,可以尝试释放一些不必要的进程,以释放内存空间。2.如果系统虚拟内存使用率较高,可以尝试增加系统虚拟内存的大小,以便更多的应用程序可以使用更多...
-
- 剪贴板权限设置方法(剪贴板访问权限)
-
1、首先打开iphone手机,触碰并按住单词或图像直到显示选择选项。2、其次,然后选取“拷贝”或“剪贴板”。3、勾选需要的“权限”,最后选择开启,即可完成苹果剪贴板权限设置。仅参考1.打开苹果手机设置按钮,点击【通用】。2.点击【键盘】,再...
-
2026-01-29 21:37 liuian
- 平板系统重装大师(平板重装win系统)
-
如果你的平板开不了机,但可以连接上电脑,那就能好办,楼主下载安装个平板刷机王到你的个人电脑上,然后连接你的平板,平板刷机王会自动识别你的平板,平板刷机王上有你平板的我刷机包,楼主点击下载一个,下载完成...
- 联想官网售后服务网点(联想官网售后服务热线)
-
联想3c服务中心是联想旗下的官方售后,是基于互联网O2O模式开发的全新服务平台。可以为终端用户提供多品牌手机、电脑以及其他3C类产品的维修、保养和保险服务。根据客户需求层次,联想服务针对个人及家庭客户...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
