Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能
liuian 2024-12-20 17:19 28 浏览
作者:俊欣
来源:关于数据分析与可视化
今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如
- 提高预测的精准度
- 降低过拟合的风险
- 加快模型的训练速度
- 增加模型的可解释性
事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出,
因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变量以及离散型的变量来讨论,毕竟不同数据类型的变量处理的方式不同,我们先来看一下对于连续型的变量而言,特征选择到底是怎么来进行的。
计算一下各个变量之间的相关性
我们先导入所需要用到的模块以及导入数据集,并且用pandas模块来读取
from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
这次用到的数据集是机器学习中尤其是初学者经常碰到的,波士顿房价的数据集,其中我们要预测的这个对象是MEDV这一列
x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1) #将模型当中要用到的特征变量保留下来
y = df["MEDV"] #最后要预测的对象
df.head()
output
CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B LSTAT MEDV
0 0.00632 18.0 2.31 0.0 0.538 ... 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 ... 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 ... 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 ... 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 ... 222.0 18.7 396.90 5.33 36.2
我们可以来看一下特征变量的数据类型
df.dtypes
output
CRIM float64
ZN float64
INDUS float64
CHAS float64
NOX float64
RM float64
AGE float64
DIS float64
RAD float64
TAX float64
PTRATIO float64
B float64
LSTAT float64
MEDV float64
dtype: object
我们看到都是清一色的连续型的变量,我们来计算一下自变量和因变量之间的相关性,通过seaborn模块当中的热力图来展示,代码如下
plt.figure(figsize=(10,8))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()
相关系数的值一般是在-1到1这个区间内波动的
- 相关系数要是接近于0意味着变量之间的相关性并不强
- 接近于-1意味着变量之间呈负相关的关系
- 接近于1意味着变量之间呈正相关的关系
我们来看一下对于因变量而言,相关性比较高的自变量有哪些
# 筛选出于因变量之间的相关性
cor_target = abs(cor["MEDV"])
# 挑选于大于0.5的相关性系数
relevant_features = cor_target[cor_target>0.5]
relevant_features
output
RM 0.695360
PTRATIO 0.507787
LSTAT 0.737663
MEDV 1.000000
Name: MEDV, dtype: float64
筛选出3个相关性比较大的自变量来,然后我们来看一下自变量之间的相关性如何,要是自变量之间的相关性非常强的话,我们也只需要保留其中的一个就行,
print(df[["LSTAT","PTRATIO"]].corr())
print("=" * 50)
print(df[["RM","LSTAT"]].corr())
print("=" * 50)
print(df[["PTRATIO","RM"]].corr())
output
LSTAT PTRATIO
LSTAT 1.000000 0.374044
PTRATIO 0.374044 1.000000
==================================================
RM LSTAT
RM 1.000000 -0.613808
LSTAT -0.613808 1.000000
==================================================
PTRATIO RM
PTRATIO 1.000000 -0.355501
RM -0.355501 1.000000
从上面的结果中我们可以看到,RM变量和LSTAT这个变量是相关性是比较高的,我们只需要保留其中一个就可以了,我们选择保留LSTAT这个变量,因为它与因变量之间的相关性更加高一些
递归消除法
我们可以尝试这么一种策略,我们选择一个基准模型,起初将所有的特征变量传进去,我们再确认模型性能的同时通过对特征变量的重要性进行排序,去掉不重要的特征变量,然后不断地重复上面的过程直到达到所需数量的要选择的特征变量。
LR= LinearRegression()
# 挑选出7个相关的变量
rfe_model = RFE(model, 7)
# 交给模型去进行拟合
X_rfe = rfe_model.fit_transform(X,y)
LR.fit(X_rfe,y)
# 输出各个变量是否是相关的,并且对其进行排序
print(rfe_model.support_)
print(rfe_model.ranking_)
output
[False False False True True True False True True False True False
True]
[2 4 3 1 1 1 7 1 1 5 1 6 1]
第一行的输出包含True和False,其中True代表的是相关的变量对应下一行的输出中的1,而False包含的是不相关的变量,然后我们需要所需要多少个特征变量,才能够使得模型的性能达到最优
#将13个特征变量都依次遍历一遍
feature_num_list=np.arange(1,13)
# 定义一个准确率
high_score=0
# 最优需要多少个特征变量
num_of_features=0
score_list =[]
for n in range(len(feature_num_list)):
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 0)
model = LinearRegression()
rfe_model = RFE(model,feature_num_list[n])
X_train_rfe_model = rfe_model.fit_transform(X_train,y_train)
X_test_rfe_model = rfe_model.transform(X_test)
model.fit(X_train_rfe_model,y_train)
score = model.score(X_test_rfe_model,y_test)
score_list.append(score)
if(score>high_score):
high_score = score
num_of_features = feature_num_list[n]
print("最优的变量是: %d个" %num_of_features)
print("%d个变量的准确率为: %f" % (num_of_features, high_score))
output
最优的变量是: 10个
10个变量的准确率为: 0.663581
从上面的结果可以看出10个变量对于整个模型来说是最优的,然后我们来看一下到底是哪10个特征变量
cols = list(X.columns)
model = LinearRegression()
# 初始化RFE模型,筛选出10个变量
rfe_model = RFE(model, 10)
X_rfe = rfe.fit_transform(X,y)
# 拟合训练模型
model.fit(X_rfe,y)
df = pd.Series(rfe.support_,index = cols)
selected_features = df[df==True].index
print(selected_features)
output
Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'PTRATIO',
'LSTAT'],
dtype='object')
正则化
例如对于Lasso的正则化而言,对于不相关的特征而言,该算法会让其相关系数变为0,因此不相关的特征变量很快就会被排除掉了,只剩下相关的特征变量
lasso = LassoCV()
lasso.fit(X, y)
coef = pd.Series(lasso.coef_, index = X.columns)
然后我们看一下哪些变量的相关系数是0
print("Lasso算法挑选了 " + str(sum(coef != 0)) + " 个变量,然后去除掉了" + str(sum(coef == 0)) + "个变量")
output
Lasso算法挑选了10个变量,然后去除掉了3个变量
我们来对计算出来的相关性系数排个序并且做一个可视化
imp_coef = coef.sort_values()
matplotlib.rcParams['figure.figsize'] = (8, 6)
imp_coef.plot(kind = "barh")
plt.title("Lasso Model Feature Importance")
output
可以看到当中有3个特征,‘NOX’、'CHAS'、'INDUS'的相关性为0
根据缺失值来进行判断
下面我们来看一下如何针对离散型的特征变量来做处理,首先我们可以根据缺失值的比重来进行判断,要是对于一个离散型的特征变量而言,绝大部分的值都是缺失的,那这个特征变量也就没有存在的必要了,我们可以针对这个思路在进行判断。
首先导入所需要用到的数据集
train = pd.read_csv("credit_example.csv")
train_labels = train['TARGET']
train = train.drop(columns = ['TARGET'])
我们可以先来计算一下数据集当中每个特征变量缺失值的比重
missing_series = train.isnull().sum() / train.shape[0]
df = pd.DataFrame(missing_series).rename(columns = {'index': '特征变量', 0: '缺失值比重'})
df.sort_values("缺失值比重", ascending = False).head()
output
缺失值比重
COMMONAREA_AVG 0.6953
COMMONAREA_MODE 0.6953
COMMONAREA_MEDI 0.6953
NONLIVINGAPARTMENTS_AVG 0.6945
NONLIVINGAPARTMENTS_MODE 0.6945
我们可以看到缺失值最高的比重将近有70%,我们也可以用可视化的根据来绘制一下缺失值比重的分布图
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize = (7, 5))
plt.hist(df['缺失值比重'], bins = np.linspace(0, 1, 11), edgecolor = 'k', color = 'blue', linewidth = 2)
plt.xticks(np.linspace(0, 1, 11));
plt.xlabel('缺失值的比重', size = 14);
plt.ylabel('特征变量的数量', size = 14);
plt.title("缺失值分布图", size = 14);
output
我们可以看到有一部分特征变量,它们缺失值的比重在50%以上,有一些还在60%以上,我们可以去除掉当中的部分特征变量
计算特征的重要性
在基于树的众多模型当中,会去计算每个特征变量的重要性,也就是feature_importances_属性,得出各个特征变量的重要性程度之后再进行特征的筛选
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
# 模型拟合数据
clf.fit(X,Y)
feat_importances = pd.Series(clf.feature_importances_, index=X.columns)
# 筛选出特征的重要性程度最大的10个特征
feat_importances.nlargest(10)
我们同时也可以对特征的重要性程度进行可视化,
feat_importances.nlargest(10).plot(kind='barh', figsize = (8, 6))
output
除了随机森林之外,基于树的算法模型还有很多,如LightGBM、XGBoost等等,大家也都可以通过对特征重要性的计算来进行特征的筛选
Select_K_Best算法
在Sklearn模块当中还提供了SelectKBest的API,针对回归问题或者是分类问题,我们挑选合适的模型评估指标,然后设定K值也就是既定的特征变量的数量,进行特征的筛选。
假定我们要处理的是分类问题的特征筛选,我们用到的是iris数据集
iris_data = load_iris()
x = iris_data.data
y = iris_data.target
print("数据集的行与列的数量: ", x.shape)
output
数据集的行与列的数量: (150, 4)
对于分类问题,我们采用的评估指标是卡方,假设我们要挑选出3个对于模型最佳性能而言的特征变量,因此我们将K设置成3
select = SelectKBest(score_func=chi2, k=3)
# 拟合数据
z = select.fit_transform(x,y)
filter_1 = select.get_support()
features = array(iris.feature_names)
print("所有的特征: ", features)
print("筛选出来最优的特征是: ", features[filter_1])
output
所有的特征: ['sepal length (cm)' 'sepal width (cm)' 'petal length (cm)'
'petal width (cm)']
筛选出来最优的特征是: ['sepal length (cm)' 'petal length (cm)' 'petal width (cm)']
那么对于回归的问题而言,我们可以选择上面波士顿房价的例子,同理我们想要筛选出对于模型最佳的性能而言的7个特征变量,同时对于回归问题的评估指标用的是f_regression
boston_data = load_boston()
x = boston_data.data
y = boston_data.target
然后我们将拟合数据,并且进行特征变量的筛选
select_regression = SelectKBest(score_func=f_regression, k=7)
z = select_regression.fit_transform(x, y)
filter_2 = select_regression.get_support()
features_regression = array(boston_data.feature_names)
print("所有的特征变量有:")
print(features_regression)
print("筛选出来的7个特征变量则是:")
print(features_regression[filter_2])
output
所有的特征变量有:
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
'B' 'LSTAT']
筛选出来的7个特征变量则是:
['CRIM' 'INDUS' 'NOX' 'RM' 'TAX' 'PTRATIO' 'LSTAT']
相关推荐
- 快速上手maven
-
Maven的作用在开发过程中需要用到各种各样的jar包,查找和下载这些jar包是件费时费力的事,特别是英文官方网站,可以将Maven看成一个整合了所有开源jar包的合集,我们需要jar包只需要从Mav...
- Windows系统——配置java环境变量
-
怎么配置java环境变量呢?首先是安装好jdk然后我的电脑右键选择属性然后选择左侧高级系统设置高级然后点环境变量然后在用户变量或系统变量中配置,用户变量指的是只有当前用户可用,系统变量指的是系统中...
- ollama本地部署更改默认C盘,Windows配置环境变量方法
-
ollama是一个大语言模型(LLM——LargeLanguageModel),本地电脑安装网上也要很多教程,看上去非常简单,一直下一步,然后直接就可以使用了。但是我在实操的时候并不是这样,安装完...
- # Windows 环境变量 Path 显示样式更改
-
#怎样学习Java##Windows环境变量Path显示样式更改##1、传统Path环境变量显示:```---》键盘上按【WIN+I】打开系统【设置】---》依次点击---》【系统...
- 如何在Windows中创建用户和系统环境变量
-
在Windows中创建环境变量之前您应该了解的事情在按照本指南中所示的任何步骤创建指向文件夹、文件或其他任何内容的用户和系统变量之前,您应该了解两件事。第一个也是最重要的一个是了解什么是环境变量。...
- Windows 中的环境变量是什么?
-
Windows中的环境变量是什么?那么,Windows中的环境变量是什么?简而言之,环境变量是描述应用程序和程序运行环境的变量。所有类型的程序都使用环境变量来回答以下问题:我安装的计算机的名称是什么...
- 【Python程序开发系列】谈一谈Windows环境变量:系统和用户变量
-
这是我的第350篇原创文章。一、引言环境变量(environmentvariables)一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等。环境变量是在操作...
- 系统小技巧:还原Windows10路径环境变量
-
有时,我们在Windows10的“运行”窗口中执行一些命令或运行一些程序,这时即便没有指定程序的具体路径,只输入程序的名称(如notepad.exe),便可以迅速调用成功。这是因为Windows默认...
- Windows10系统的“环境变量”在哪里呢?
-
当我们在操作系统是Windows10的电脑里安装了一些软件,要通过配置环境变量才能使用软件时,在哪里能找到“环境变量”窗口呢?可以按照下面的步骤找到“环境变量”。说明:下面的步骤和截图是在Window...
- 系统小技巧:彻底弄懂Windows 10环境变量
-
每当我们进行系统清理时,清理软件总能自动找到Windows的临时文件夹之所在,然后加以清理,即便是我们重定向了TEMP目录也是如此。究其原因,是因为清理软件会根据TEMP环境变量来判断现有临时文件夹的...
- MySQL 5.7 新特性大全和未来展望
-
本文转自微信公众号:高可用架构作者:杨尚刚引用美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计。前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存...
- MySQL系列-源码编译安装(v8.0.25)
-
一、前言生产环境建议使用二进制安装法,其优点是部署简单、快速、方便,并且相对"yum/rpm安装"方法能更方便地自定义文件存放的目录结构,方便用脚本批量部署,方便日后运维管理。在生产...
- MySQL如何实时同步数据到ES?试试这款阿里开源的神器!
-
前几天在网上冲浪的时候发现了一个比较成熟的开源中间件——Canal。在了解了它的工作原理和使用场景后,顿时产生了浓厚的兴趣。今天,就让我们跟随我的脚步,一起来揭开它神秘的面纱吧。简介canal翻译为...
- 技术老兵十年专攻MySQL:编写了763页核心总结,90%MySQL问题全解
-
MySQL是开放源码的关系数据库管理系统,由于性能高、成本低、可靠性好,成为现在最流行的开源数据库。MySQL学习指南笔记领取方式:关注、转发后私信小编【111】即可免费获得《MySQL进阶笔记》的...
- Mysql和Hive之间通过Sqoop进行数据同步
-
文章回顾理论大数据框架原理简介大数据发展历程及技术选型实践搭建大数据运行环境之一搭建大数据运行环境之二本地MAC环境配置CPU数和内存大小查看CPU数sysctl machdep.cpu...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
飞牛OS入门安装遇到问题,如何解决?
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)