Python数据分析之Seaborn(分类分析绘图 )
liuian 2024-12-15 15:25 21 浏览
?Seaborn分类分析绘图
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical")))
titanic = sns.load_dataset("titanic") #导入泰坦尼克数据集
tips = sns.load_dataset("tips") #导入小费数据集
iris = sns.load_dataset("iris") #导入鸢尾花数据集
散点图
sns.stripplot(x="day", y="total_bill", data=tips)
问题:有重叠,无法看见数据的密度。
- 解决方法一:通过jitter抖动
抖动是平时可视化中的常用的观察“密度”的方法,除了使用参数抖动,特定的抖动需求也可以用numpy在数据上处理实现
sns.stripplot(x="day", y="total_bill", data=tips, jitter=True) # jitter抖动
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a3216a0>
- 解决方法二:通过swarmplot()函数
sns.swarmplot(x="day", y="total_bill", data=tips)
<matplotlib.axes._subplots.AxesSubplot at 0x22d87f3b128>
sns.swarmplot(x="day", y="total_bill", hue="sex",data=tips) #hue 参数控制分组绘图
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a428860>
箱型图
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。
如上图所示,标示了图中每条线表示的含义,其中应用到了分位值(数)的概念。
主要包含六个数据节点,将一组数据从大到小排列,分别计算出它的上边缘,上四分位数Q3,中位数,下四分位数Q1,下边缘,还有一个异常值。
举例说明,以下是箱形图的具体例子:
这组数据显示出:
- 最小值(minimum)=5
- 下四分位数(Q1)=7
- 中位数(Med--也就是Q2)=8.5
- 上四分位数(Q3)=9
- 最大值(maximum)=10
- 平均值=8
- 四分位间距=Q3-Q1=2 (即ΔQ)
- 最大值区间: Q3+1.5ΔQ = 12
- 最小值区间: Q1-1.5ΔQ = 4
- mild outlier = 3.5
- extreme outlier = 0.5
sns.boxplot(x="day", y="total_bill", hue="time", data=tips)
<matplotlib.axes._subplots.AxesSubplot at 0x22d8bbd7240>
琴形图
seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', split=False, orient=None, linewidth=None, color=None, palette=None, saturation=0.75, ax=None, **kwargs)
- split: bool, optional #琴形图是否从中间分开两部分
- scale: {“area”, “count”, “width”}, optional #用于调整琴形图的宽带。
- area——每个琴图拥有相同的面域;
- count——根据样本数量来调节宽度;
- width——每个琴图则拥有相同的宽度。
- inner: {“box”, “quartile”, “point”, “stick”, None}, optional #控制琴图内部数据点的形态。
- box——绘制微型 boxplot;
- quartiles——绘制四分位的分布;
- point/stick——绘制点或小竖条。
sns.violinplot(x="total_bill", y="day", hue="time", data=tips)
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a9f97b8>
sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True) #split: bool, optional #琴形图是否从中间分开两部分
条形图
显示值的集中趋势可以用条形图
sns.barplot(x="sex", y="survived", hue="class", data=titanic)
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a5bc358>
点图
点图可以更好的描述变化差异
sns.pointplot(x="sex", y="survived", hue="class", data=titanic)
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a5bcda0>
#详细指定属性值
sns.pointplot(x="class", y="survived", hue="sex", data=titanic,
palette={"male": "g", "female": "m"}, # 指定颜色
markers=["^", "o"], # 指定点样式
linestyles=["-", "--"]); # 指定线型样式
组合
#琴型图 + 分散点图
sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)
<matplotlib.axes._subplots.AxesSubplot at 0x22d8a3f4908>
多层面板分类图
factorplot()函数是对各种图形的一个更高级别的API封装,在Seaborn中非常常用。
seaborn.factorplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=<function mean>, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='point', size=4, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
参数说明:
- x,y 数据集变量(变量名)
- hue 控制分组绘图(变量名)
- date 数据集 (数据集名)
- row,col 更多分类变量进行平铺显示 (变量名)
- col_wrap 每行的最高平铺数 (整数)
- estimator 在每个分类中进行矢量到标量的映射 (矢量)
- ci 置信区间 (浮点数或None)
- n_boot 计算置信区间时使用的引导迭代次数 (整数)
- units 采样单元的标识符,用于执行多级引导和重复测量设计 (数据变量或向量数据)
- order, hue_order 对应排序列表 (字符串列表)
- row_order, col_order 对应排序列表 (字符串列表)
- kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点
- size 每个面的高度(英寸) (标量)
- aspect 纵横比 (标量)
- orient 方向 ("v"/"h")
- color 颜色 (matplotlib颜色)
- palette 调色板 (seaborn颜色色板或字典)
- legend hue的信息面板 (True/False)
- legend_out 是否扩展图形,并将信息框绘制在中心右边 (True/False)
- share{x,y} 共享轴线 (True/False)
- facet_kws FacetGrid的其他参数 (字典)
sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips) #默认是点图
<seaborn.axisgrid.FacetGrid at 0x22d8a79def0>
sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips, kind="bar") #绘制条形图
<seaborn.axisgrid.FacetGrid at 0x22d8a648748>
sns.factorplot(x="day", y="total_bill", hue="smoker",
col="time", data=tips, kind="swarm") #绘制分散点图
<seaborn.axisgrid.FacetGrid at 0x22d8a867be0>
sns.factorplot(x="time", y="total_bill", hue="smoker",
col="day", data=tips, kind="box", size=4, aspect=.5) #绘制箱型图
<seaborn.axisgrid.FacetGrid at 0x22d8a8bcb00>
参考
[Style functions]http://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
[Color palettes]http://seaborn.pydata.org/tutorial/color_palettes.html#palette-tutorial
[Distribution plots]http://seaborn.pydata.org/tutorial/distributions.html#distribution-tutorial
[Categorical plots]http://seaborn.pydata.org/tutorial/categorical.html#categorical-tutorial
[Regression plots]http://seaborn.pydata.org/tutorial/regression.html#regression-tutorial
[Axis grid objects]http://seaborn.pydata.org/tutorial/axis_grids.html#grid-tutorial
[10分钟python图表绘制]https://zhuanlan.zhihu.com/p/24464836
相关人工智能与异构计算的知识分享,欢迎关注我的公众号【AI异构】
相关推荐
- 软件测试/测试开发丨Pytest 自动化测试框架(五)
-
公众号搜索:TestingStudio霍格沃兹测试开发的干货都很硬核测试报告在项目中是至关重要的角色,一个好的测试报告:可以体现测试人员的工作量;开发人员可以从测试报告中了解缺陷的情况;测试经理可以...
- python爬虫实战之Headers信息校验-Cookie
-
一、什么是cookie上期我们了解了User-Agent,这期我们来看下如何利用Cookie进行用户模拟登录从而进行网站数据的爬取。首先让我们来了解下什么是Cookie:Cookie指某些网站为了辨别...
- 软件测试 | 结合Allure生成测试报告
-
简介测试报告在项目至关重要,测试人员可以在测试报告中体现自己的工作量,开发人员可以从测试报告中了解缺陷的情况,测试经理可以从测试报告中看到测试人员的执行情况及测试用例的覆盖率,项目负责人可以通过测...
- 使用FUSE挖掘文件上传漏洞(文件上传漏洞工具)
-
关于FUSEFUSE是一款功能强大的渗透测试安全工具,可以帮助广大研究人员在最短的时间内迅速寻找出目标软件系统中存在的文件上传漏洞。FUSE本质上是一个渗透测试系统,主要功能就是识别无限制可执行文件上...
- 第42天,我终于意识到,爬虫这条路,真的好艰难
-
昨天说到学爬虫的最初四行代码,第四行中的print(res.text),我没太懂。为啥最后的输出的结果,不是显示百度网页全部的源代码呢?这个世界上永远不缺好心人。评论区的大神告诉我:因为只包含静态h...
- 详解Pytest单元测试框架,轻松搞定自动化测试实战
-
pytest是目前企业里面使用最多、最流行的Python的单元测试框架,那我们今天就使用这个框架来完成一个网易163邮箱登录的自动化实战案例。下面我们先把我们案例需要的工具进行相关的介绍:01pyt...
- 干货|Python大佬手把手带你破解哔哩哔哩网滑动验证(上篇)
-
/1前言/有爬虫经验的各位小伙伴都知道,正常我们需要登录才能获取信息的网站,是比较难爬的。原因就是在于,现在各大网站为了反爬,与爬虫机制斗智斗勇,一般的都加入了图片验证码、滑动验证码之类的干扰,让...
- Python 爬虫-如何抓取需要登录的网页
-
本文是Python爬虫系列第四篇,前三篇快速入口:Python爬虫-开启数据世界的钥匙Python爬虫-HTTP协议和网页基础Python爬虫-使用requests和B...
- 使用Selenium实现微博爬虫:预登录、展开全文、翻页
-
前言想实现爬微博的自由吗?这里可以实现了!本文可以解决微博预登录、识别“展开全文”并爬取完整数据、翻页设置等问题。一、区分动态爬虫和静态爬虫1、静态网页静态网页是纯粹的HTML,没有后台数据库,不含程...
- 从零开始学Python——使用Selenium抓取动态网页数据
-
1.selenium抓取动态网页数据基础介绍1.1什么是AJAX AJAX(AsynchronouseJavaScriptAndXML:异步JavaScript和XML)通过在后台与服务器进...
- PHP自动测试框架Top 10(php单元测试工具)
-
对于很多PHP开发新手来说,测试自己编写的代码是一个非常棘手的问题。如果出现问题,他们将不知道下一步该怎么做。花费很长的时间调试PHP代码是一个非常不明智的选择,最好的方法就是在编写应用程序代码之前就...
- 10款最佳PHP自动化测试框架(php 自动化测试)
-
为什么测试如此重要?PHP开发新手往往不会测试自己编写的代码,我们中的大多数通过不断测试我们刚刚所编写浏览器窗口的新特性和功能来进行检测,但是当事情出现错误的时候我们往往不知道应该做些什么。为我们的代...
- 自动化运维:Selenium 测试(seleniumbase搭建自动化测试平台)
-
本文将以Buddy中的Selenium测试流水线示例,来看看自动化测试就是如此简单易用!Selenium是一套用于浏览器测试自动化的工具。使用Buddy专有服务,您可以直接在Buddy中运行Selen...
- Selenium自动化测试(selenium自动化测试工具)
-
Selenium是一系列基于web的自动化测试工具。它提供了一系列测试函数,用于支持Web自动化测试。这些函数非常灵活,它们能够通过多种方式定位界面元素,并可以将预期结果与系统实际表现进行比较。作为一...
- 技术分享 | Web自动化之Selenium安装
-
本文节选自霍格沃兹测试开发学社内部教材Web应用程序的验收测试常常涉及一些手工任务,例如打开一个浏览器,并执行一个测试用例中所描述的操作。但是手工执行的任务容易出现人为的错误,也比较费时间。因此,将...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)