百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

R数据分析:再写潜在类别分析LCA的做法与解释

liuian 2024-12-15 15:25 52 浏览

应粉丝要求,再给大家写一期潜在类别分析的教程,尽量写的详细一点。

首先,问题导入,啥是潜在类别分析?

Latent Class Analysis (LCA) is a statistical model in which individuals can be classified into mutually exclusive and exhaustive types, or latent classes, based on their pattern of answers on a set of (categorical) measured variables.

潜在类别分析就是依据个体在分类变量上的响应,将个体分为互斥的组,群,潜类别

在这儿,组,群,潜类别都是一个东西,这儿大家注意,在潜在类别分析中响应变量或者说显变一定是分类变量,这个要和潜在剖面分析LPA区别开。

在做潜类别的时候你首先要设定你要你的数据有几个潜类别,我们的标准是拟合好的情况下尽可能选择最少的潜类别。

这儿值得注意的是,在R语言种poLCA的作者说过这么一段话:

He said, that he wouldn′t rely on statistical criteria to decide which model is the best, but he would look which model has the most meaningful interpretation and has a better answer to the research question.

也就是说最终你考虑到底你的数据有几个潜类别时,一定要考虑结果的可解释性。

今天还是给大家写一个系统的例子。

实例操练

我们要用到的R包为poLCA,在做潜类别分析的时候,我们的数据中不能有0,负值和小数点,还有,如果你的变量是二分类变量,一定不能编码为0、1,需要改为1,2。

跑潜在类别分析的语法

poLCA(formula, data, nclass=2, maxiter=1000, graphs=FALSE, tol=1e-10, na.rm=TRUE, probs.start=NULL, nrep=1, verbose=TRUE, calc.se=TRUE)

上面是poLCA包默认的语法参数,在自己跑的时候你可把graphs参数改成TRUE,这样就可以自动出图。

比如我们还是用上一篇文章中的samhsa2015.csv数据集跑,那么语法就可以写为:

f1 <- cbind(mhintake, mhdiageval, mhreferral, treatmt, adminserv)~1
LCA2 <- poLCA(f1, data=samhsa2015, nclass=2,graphs=TRUE)

运行后,我们就可以出图:

图中有每个显变量,和两个潜类别在不同显变量上的响应概率以及两个潜类别中的个体数量占比。

循环语法

咱们自己做分析时,会遇到的情况是,我也不知道我到底该把潜类别数量固定为几个,所以我们需要一个一个去试,相信很多用Mplus的同学都有这种经历,需要把类别数量设定为不同的数,然后都跑一遍,然后把结果记下来,再比较选择最优的模型。

但是如果用R跑,我们可以写一个循环,让它一次性把所有可能给我们跑完,并输出最优模型,岂不是美滋滋。所以大家一定有必要掌握一门编程语言哦。

循环语法如下:

#循环所有可能数量的潜类别
max_II <- -100000
min_bic <- 100000
for(i in 2:10){
  lc <- poLCA(f, mydata, nclass=i, maxiter=3000, 
              tol=1e-5, na.rm=FALSE,  
              nrep=10, verbose=TRUE, calc.se=TRUE)
  if(lc$bic < min_bic){
    min_bic <- lc$bic
    LCA_best_model<-lc
  }
}    	
LCA_best_model

大家只需要把自己的数据套进去就可以直接输出最优模型啦。

比如还是我们刚刚用的数据,直接运行循环语法:

max_II <- -100000
min_bic <- 100000
for(i in 2:10){
  lc <- poLCA(f1, samhsa2015, nclass=i, maxiter=3000, 
              tol=1e-5, na.rm=FALSE,  
              nrep=10, verbose=TRUE, calc.se=TRUE)
  if(lc$bic < min_bic){
    min_bic <- lc$bic
    LCA_best_model<-lc
  }
}    	
LCA_best_model

上面的代码从2到10给你自动拟合10个模型,并输出最优bic的模型,运行时间有点长哈,我电脑跑了20分钟,大家耐心一点。

不过你不用设置跑2到10,一般情况跑2-5个潜类别就完全够用了。

我对我的数据跑完上面的代码后,得到如下结果

就是说,其实我的数据适合做4个潜类别。

LCA画2D可视化语法

我们poLCA的自己出的图是3D的,我们也可以选择用ggplot2画2D的图出来,代码如下:

lcmodel <- reshape2::melt(LCA_best_model$probs, level=2)
zp1 <- ggplot(lcmodel,aes(x = L2, y = value, fill = Var2))
zp1 <- zp1 + geom_bar(stat = "identity", position = "stack")
zp1 <- zp1 + facet_grid(Var1 ~ .) 
zp1 <- zp1 + scale_fill_brewer(type="seq", palette="Greys") +theme_bw()
zp1 <- zp1 + labs(x = "Fragebogenitems",y="Anteil der Item-\nAntwortkategorien", fill ="Antwortkategorien")
zp1 <- zp1 + theme( axis.text.y=element_blank(),
                    axis.ticks.y=element_blank(),                    
                    panel.grid.major.y=element_blank())
zp1 <- zp1 + guides(fill = guide_legend(reverse=TRUE))
print(zp1)

运行后得到下图:

这个如怎么解释呢?

我这个数据不是有5个变量嘛,意思就是指标告诉我们根据这5个变量把数据分为4个潜类别比较合适,上面这个图就是每一个潜类别在5个指标上的响应概率,因为我的每个指标都是2分类,pr(1)表示在相应指标响应1的概率,pr(2)表示在相应指标相应2的概率。

理解到这,我们就可以知道潜类别3在每个指标上响应2的概率都很大,而潜类别1在每个指标上响应1的概率都很大,以此类推,根据这些信息你就可以给你数据的每个潜类别进行命名啦。

你学会了嘛?

快快关注一波。

小结

今天又给大家写了潜类别的做法,感谢大家耐心看完,自己的文章都写的很细,代码都在原文中,希望大家都可以自己做一做,请关注后私信回复“数据链接”获取所有数据和本人收集的学习资料。如果对您有用请先收藏,再点赞转发。

也欢迎大家的意见和建议,大家想了解什么统计方法都可以在文章下留言,说不定我看见了就会给你写教程哦。

如果你是一个大学本科生或研究生,如果你正在因为你的统计作业、数据分析、论文、报告、考试等发愁,如果你在使用SPSS,R,Python,Mplus, Excel中遇到任何问题,都可以联系我。因为我可以给您提供好的,详细和耐心的数据分析服务。

如果你对Z检验,t检验,方差分析,多元方差分析,回归,卡方检验,相关,多水平模型,结构方程模型,中介调节,量表信效度等等统计技巧有任何问题,请私信我,获取详细和耐心的指导。

If you are a student and you are worried about you statistical #Assignments, #Data #Analysis, #Thesis, #reports, #composing, #Quizzes, Exams.. And if you are facing problem in #SPSS, #R-Programming, #Excel, Mplus, then contact me. Because I could provide you the best services for your Data Analysis.

Are you confused with statistical Techniques like z-test, t-test, ANOVA, MANOVA, Regression, Logistic Regression, Chi-Square, Correlation, Association, SEM, multilevel model, mediation and moderation etc. for your Data Analysis...??

Then Contact Me. I will solve your Problem...

加油吧,打工人!

猜你喜欢

R数据分析:潜在剖面分析LPA的做法与解释

Mplus数据分析:潜在类别分析(LCA)流程(详细版)

R数据分析:用R语言做潜类别分析LCA

相关推荐

教你把多个视频合并成一个视频的方法

一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...

零代码编程:用kimichat合并一个文件夹下的多个文件

一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...

Java APT_java APT 生成代码

JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...

Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器

在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...

挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?

如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...

五年后,谷歌还在全力以赴发展 Kotlin

作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...

kotlin和java开发哪个好,优缺点对比

Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...

移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?

掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...

颜值非常高的XShell替代工具Termora,不一样的使用体验!

Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...

预处理的底层原理和预处理编译运行异常的解决方案

若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...

为“架构”再建个模:如何用代码描述软件架构?

在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...

深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型

2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...

比分网开发技术栈与功能详解_比分网有哪些

一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...

设计模式之-生成器_一键生成设计

一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...

构建第一个 Kotlin Android 应用_kotlin简介

第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...