Ollama+Qwen2,轻松搭建支持函数调用的聊天系统
liuian 2024-12-07 14:59 19 浏览
本文介绍如何通过Ollama结合Qwen2,搭建OpenAI格式的聊天API,并与外部函数结合来拓展模型的更多功能。
tools是OpenAI的Chat Completion API中的一个可选参数,可用于提供函数调用规范(function specifications)。这样做的目的是使模型能够生成符合所提供的规范的函数参数格式。同时,API 实际上不会执行任何函数调用。开发人员需要使用模型输出来执行函数调用。
Ollama支持OpenAI格式API的tool参数,在tool参数中,如果functions提供了参数,Qwen将会决定何时调用什么样的函数,不过Ollama目前还不支持强制使用特定函数的参数tool_choice。
注:本文测试用例参考OpenAI cookbook:https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
本文主要包含以下三个部分:
- 模型部署:使用Ollama和千问,通过设置template,部署支持Function call的聊天API接口。
- 生成函数参数:指定一组函数并使用 API 生成函数参数。
- 调用具有模型生成的参数的函数:通过实际执行具有模型生成的参数的函数来闭合循环。
01、模型部署
单模型文件下载
使用ModelScope命令行工具下载单个模型,本文使用Qwen2-7B的GGUF格式:
modelscope download --model=qwen/Qwen2-7B-Instruct-GGUF --local_dir . qwen2-7b-instruct-q5_k_m.gguf
Linux环境使用
Liunx用户可使用魔搭镜像环境安装【推荐】
modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh
启动Ollama服务
ollama serve
创建ModelFile
复制模型路径,创建名为“ModelFile”的meta文件,其中设置template,使之支持function call,内容如下:
FROM /mnt/workspace/qwen2-7b-instruct-q5_k_m.gguf
# set the temperature to 0.7 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{ .System }}
{{- if .Tools }}
# Tools
You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>{{- range .Tools }}{{ .Function }}{{- end }}</tools>
For each function call, return a JSON object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>{{- end }}<|im_end|>{{- end }}
{{- range .Messages }}
{{- if eq .Role "user" }}
<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{- else if eq .Role "assistant" }}
<|im_start|>{{ .Role }}
{{- if .Content }}
{{ .Content }}
{{- end }}
{{- if .ToolCalls }}
<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}<|im_end|>
{{- else if eq .Role "tool" }}
<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{- end }}
{{- end }}
<|im_start|>assistant
{{ else }}{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}
"""
创建自定义模型
使用ollama create命令创建自定义模型
ollama create myqwen2 --file ./ModelFile
运行模型:
ollama run myqwen2
02、生成函数参数
安装依赖
!pip install scipy --quiet
!pip install tenacity --quiet
!pip install tiktoken --quiet
!pip install termcolor --quiet
!pip install openai --quiet
使用OpenAI的API格式调用本地部署的qwen2模型
import json
import openai
from tenacity import retry, wait_random_exponential, stop_after_attempt
from termcolor import colored
MODEL = "myqwen2"
client = openai.OpenAI(
base_url="http://127.0.0.1:11434/v1",
api_key = "None"
)
实用工具
首先,让我们定义一些实用工具,用于调用聊天完成 API 以及维护和跟踪对话状态。
@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, tools=None, tool_choice=None, model=MODEL):
try:
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
tool_choice=tool_choice,
)
return response
except Exception as e:
print("Unable to generate ChatCompletion response")
print(f"Exception: {e}")
return e
def pretty_print_conversation(messages):
role_to_color = {
"system": "red",
"user": "green",
"assistant": "blue",
"function": "magenta",
}
for message in messages:
if message["role"] == "system":
print(colored(f"system: {message['content']}\n", role_to_color[message["role"]]))
elif message["role"] == "user":
print(colored(f"user: {message['content']}\n", role_to_color[message["role"]]))
elif message["role"] == "assistant" and message.get("function_call"):
print(colored(f"assistant: {message['function_call']}\n", role_to_color[message["role"]]))
elif message["role"] == "assistant" and not message.get("function_call"):
print(colored(f"assistant: {message['content']}\n", role_to_color[message["role"]]))
elif message["role"] == "function":
print(colored(f"function ({message['name']}): {message['content']}\n", role_to_color[message["role"]]))
基本概念(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#basic-concepts)
这里假设了一个天气 API,并设置了一些函数规范和它进行交互。将这些函数规范传递给 Chat API,以便模型可以生成符合规范的函数参数。
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
}
},
{
"type": "function",
"function": {
"name": "get_n_day_weather_forecast",
"description": "Get an N-day weather forecast",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
"num_days": {
"type": "integer",
"description": "The number of days to forecast",
}
},
"required": ["location", "format", "num_days"]
},
}
},
]
如果我们向模型询问当前的天气情况,它将会反问,希望获取到进一步的更多的参数信息。
messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "hi ,can you tell me what's the weather like today"})
chat_response = chat_completion_request(
messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='Of course, I can help with that. To provide accurate information, could you please specify the city and state you are interested in?', role='assistant', function_call=None, tool_calls=None)
一旦我们通过对话提供缺失的参数信息,模型就会为我们生成适当的函数参数。
messages.append({"role": "user", "content": "I'm in Glasgow, Scotland."})
chat_response = chat_completion_request(
messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_qq8e5z9w', function=Function(arguments='{"location":"Glasgow, Scotland"}', name='get_current_weather'), type='function')])
通过不同的提示词,我们可以让它反问不同的问题以获取函数参数信息。
messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "can you tell me, what is the weather going to be like in Glasgow, Scotland in next x days"})
chat_response = chat_completion_request(
messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='Sure, I can help with that. Could you please specify how many days ahead you want to know the weather forecast for Glasgow, Scotland?', role='assistant', function_call=None, tool_calls=None)
messages.append({"role": "user", "content": "5 days"})
chat_response = chat_completion_request(
messages, tools=tools
)
chat_response.choices[0]
Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_b7f3j7im', function=Function(arguments='{"location":"Glasgow, Scotland","num_days":5}', name='get_n_day_weather_forecast'), type='function')]))
并行函数调用
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#parallel-function-calling)
支持一次提问中,并行调用多次函数
messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "what is the weather going to be like in San Francisco and Glasgow over the next 4 days"})
chat_response = chat_completion_request(
messages, tools=tools, model=MODEL
)
assistant_message = chat_response.choices[0].message.tool_calls
assistant_message
[ChatCompletionMessageToolCall(id='call_vei89rz3', function=Function(arguments='{"location":"San Francisco, CA","num_days":4}', name='get_n_day_weather_forecast'), type='function'),
ChatCompletionMessageToolCall(id='call_4lgoubee', function=Function(arguments='{"location":"Glasgow, UK","num_days":4}', name='get_n_day_weather_forecast'), type='function')]
使用模型生成函数
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#how-to-call-functions-with-model-generated-arguments)
在这个示例中,演示如何执行输入由模型生成的函数,并使用它来实现可以为我们解答有关数据库的问题的代理。
本文使用Chinook 示例数据库(https://www.sqlitetutorial.net/sqlite-sample-database/)。
指定执行 SQL 查询的函数
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#specifying-a-function-to-execute-sql-queries)
首先,让我们定义一些有用的函数来从 SQLite 数据库中提取数据。
import sqlite3
conn = sqlite3.connect("data/Chinook.db")
print("Opened database successfully")
def get_table_names(conn):
"""Return a list of table names."""
table_names = []
tables = conn.execute("SELECT name FROM sqlite_master WHERE type='table';")
for table in tables.fetchall():
table_names.append(table[0])
return table_names
def get_column_names(conn, table_name):
"""Return a list of column names."""
column_names = []
columns = conn.execute(f"PRAGMA table_info('{table_name}');").fetchall()
for col in columns:
column_names.append(col[1])
return column_names
def get_database_info(conn):
"""Return a list of dicts containing the table name and columns for each table in the database."""
table_dicts = []
for table_name in get_table_names(conn):
columns_names = get_column_names(conn, table_name)
table_dicts.append({"table_name": table_name, "column_names": columns_names})
return table_dicts
现在可以使用这些实用函数来提取数据库模式的表示。
database_schema_dict = get_database_info(conn)
database_schema_string = "\n".join(
[
f"Table: {table['table_name']}\nColumns: {', '.join(table['column_names'])}"
for table in database_schema_dict
]
)
与之前一样,我们将为希望 API 为其生成参数的函数定义一个函数规范。请注意,我们正在将数据库模式插入到函数规范中。这对于模型了解这一点很重要。
tools = [
{
"type": "function",
"function": {
"name": "ask_database",
"description": "Use this function to answer user questions about music. Input should be a fully formed SQL query.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": f"""
SQL query extracting info to answer the user's question.
SQL should be written using this database schema:
{database_schema_string}
The query should be returned in plain text, not in JSON.
""",
}
},
"required": ["query"],
},
}
}
]
执行 SQL 查询
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#executing-sql-queries)
现在让我们实现实际执行数据库查询的函数。
def ask_database(conn, query):
"""Function to query SQLite database with a provided SQL query."""
try:
results = str(conn.execute(query).fetchall())
except Exception as e:
results = f"query failed with error: {e}"
return results
使用 Chat Completions API 调用函数的步骤:
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#steps-to-invoke-a-function-call-using-chat-completions-api)
步骤 1:向模型提示可能导致模型选择要使用的工具的内容。工具的描述(例如函数名称和签名)在“工具”列表中定义,并在 API 调用中传递给模型。如果选择,函数名称和参数将包含在响应中。
步骤 2:通过编程检查模型是否想要调用函数。如果是,则继续执行步骤 3。
步骤 3:从响应中提取函数名称和参数,使用参数调用该函数。将结果附加到消息中。
步骤 4:使用消息列表调用聊天完成 API 以获取响应。
messages = [{
"role":"user",
"content": "What is the name of the album with the most tracks?"
}]
response = client.chat.completions.create(
model='myqwen2',
messages=messages,
tools= tools,
tool_choice="auto"
)
# Append the message to messages list
response_message = response.choices[0].message
messages.append(response_message)
print(response_message)
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_23nnhlv6', function=Function(arguments='{"query":"SELECT Album.Title FROM Album JOIN Track ON Album.AlbumId = Track.AlbumId GROUP BY Album.Title ORDER BY COUNT(*) DESC LIMIT 1"}', name='ask_database'), type='function')])
# Step 2: determine if the response from the model includes a tool call.
tool_calls = response_message.tool_calls
if tool_calls:
# If true the model will return the name of the tool / function to call and the argument(s)
tool_call_id = tool_calls[0].id
tool_function_name = tool_calls[0].function.name
tool_query_string = json.loads(tool_calls[0].function.arguments)['query']
# Step 3: Call the function and retrieve results. Append the results to the messages list.
if tool_function_name == 'ask_database':
results = ask_database(conn, tool_query_string)
messages.append({
"role":"tool",
"tool_call_id":tool_call_id,
"name": tool_function_name,
"content":results
})
# Step 4: Invoke the chat completions API with the function response appended to the messages list
# Note that messages with role 'tool' must be a response to a preceding message with 'tool_calls'
model_response_with_function_call = client.chat.completions.create(
model="myqwen2",
messages=messages,
) # get a new response from the model where it can see the function response
print(model_response_with_function_call.choices[0].message.content)
else:
print(f"Error: function {tool_function_name} does not exist")
else:
# Model did not identify a function to call, result can be returned to the user
print(response_message.content)
The album "Greatest Hits" contains the most tracks
欢迎点赞关注我,获取更多关于 AI 的前沿资讯。别忘了将今天的内容分享给你的朋友们,让我们一起见证 AI 技术的飞跃!学习商务交流
相关推荐
- 软件测试/测试开发丨Pytest 自动化测试框架(五)
-
公众号搜索:TestingStudio霍格沃兹测试开发的干货都很硬核测试报告在项目中是至关重要的角色,一个好的测试报告:可以体现测试人员的工作量;开发人员可以从测试报告中了解缺陷的情况;测试经理可以...
- python爬虫实战之Headers信息校验-Cookie
-
一、什么是cookie上期我们了解了User-Agent,这期我们来看下如何利用Cookie进行用户模拟登录从而进行网站数据的爬取。首先让我们来了解下什么是Cookie:Cookie指某些网站为了辨别...
- 软件测试 | 结合Allure生成测试报告
-
简介测试报告在项目至关重要,测试人员可以在测试报告中体现自己的工作量,开发人员可以从测试报告中了解缺陷的情况,测试经理可以从测试报告中看到测试人员的执行情况及测试用例的覆盖率,项目负责人可以通过测...
- 使用FUSE挖掘文件上传漏洞(文件上传漏洞工具)
-
关于FUSEFUSE是一款功能强大的渗透测试安全工具,可以帮助广大研究人员在最短的时间内迅速寻找出目标软件系统中存在的文件上传漏洞。FUSE本质上是一个渗透测试系统,主要功能就是识别无限制可执行文件上...
- 第42天,我终于意识到,爬虫这条路,真的好艰难
-
昨天说到学爬虫的最初四行代码,第四行中的print(res.text),我没太懂。为啥最后的输出的结果,不是显示百度网页全部的源代码呢?这个世界上永远不缺好心人。评论区的大神告诉我:因为只包含静态h...
- 详解Pytest单元测试框架,轻松搞定自动化测试实战
-
pytest是目前企业里面使用最多、最流行的Python的单元测试框架,那我们今天就使用这个框架来完成一个网易163邮箱登录的自动化实战案例。下面我们先把我们案例需要的工具进行相关的介绍:01pyt...
- 干货|Python大佬手把手带你破解哔哩哔哩网滑动验证(上篇)
-
/1前言/有爬虫经验的各位小伙伴都知道,正常我们需要登录才能获取信息的网站,是比较难爬的。原因就是在于,现在各大网站为了反爬,与爬虫机制斗智斗勇,一般的都加入了图片验证码、滑动验证码之类的干扰,让...
- Python 爬虫-如何抓取需要登录的网页
-
本文是Python爬虫系列第四篇,前三篇快速入口:Python爬虫-开启数据世界的钥匙Python爬虫-HTTP协议和网页基础Python爬虫-使用requests和B...
- 使用Selenium实现微博爬虫:预登录、展开全文、翻页
-
前言想实现爬微博的自由吗?这里可以实现了!本文可以解决微博预登录、识别“展开全文”并爬取完整数据、翻页设置等问题。一、区分动态爬虫和静态爬虫1、静态网页静态网页是纯粹的HTML,没有后台数据库,不含程...
- 从零开始学Python——使用Selenium抓取动态网页数据
-
1.selenium抓取动态网页数据基础介绍1.1什么是AJAX AJAX(AsynchronouseJavaScriptAndXML:异步JavaScript和XML)通过在后台与服务器进...
- PHP自动测试框架Top 10(php单元测试工具)
-
对于很多PHP开发新手来说,测试自己编写的代码是一个非常棘手的问题。如果出现问题,他们将不知道下一步该怎么做。花费很长的时间调试PHP代码是一个非常不明智的选择,最好的方法就是在编写应用程序代码之前就...
- 10款最佳PHP自动化测试框架(php 自动化测试)
-
为什么测试如此重要?PHP开发新手往往不会测试自己编写的代码,我们中的大多数通过不断测试我们刚刚所编写浏览器窗口的新特性和功能来进行检测,但是当事情出现错误的时候我们往往不知道应该做些什么。为我们的代...
- 自动化运维:Selenium 测试(seleniumbase搭建自动化测试平台)
-
本文将以Buddy中的Selenium测试流水线示例,来看看自动化测试就是如此简单易用!Selenium是一套用于浏览器测试自动化的工具。使用Buddy专有服务,您可以直接在Buddy中运行Selen...
- Selenium自动化测试(selenium自动化测试工具)
-
Selenium是一系列基于web的自动化测试工具。它提供了一系列测试函数,用于支持Web自动化测试。这些函数非常灵活,它们能够通过多种方式定位界面元素,并可以将预期结果与系统实际表现进行比较。作为一...
- 技术分享 | Web自动化之Selenium安装
-
本文节选自霍格沃兹测试开发学社内部教材Web应用程序的验收测试常常涉及一些手工任务,例如打开一个浏览器,并执行一个测试用例中所描述的操作。但是手工执行的任务容易出现人为的错误,也比较费时间。因此,将...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)