百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Ollama+Qwen2,轻松搭建支持函数调用的聊天系统

liuian 2024-12-07 14:59 38 浏览

本文介绍如何通过Ollama结合Qwen2,搭建OpenAI格式的聊天API,并与外部函数结合来拓展模型的更多功能。


tools是OpenAI的Chat Completion API中的一个可选参数,可用于提供函数调用规范(function specifications)。这样做的目的是使模型能够生成符合所提供的规范的函数参数格式。同时,API 实际上不会执行任何函数调用。开发人员需要使用模型输出来执行函数调用。


Ollama支持OpenAI格式API的tool参数,在tool参数中,如果functions提供了参数,Qwen将会决定何时调用什么样的函数,不过Ollama目前还不支持强制使用特定函数的参数tool_choice。


注:本文测试用例参考OpenAI cookbook:https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models


本文主要包含以下三个部分:

  • 模型部署:使用Ollama和千问,通过设置template,部署支持Function call的聊天API接口。
  • 生成函数参数:指定一组函数并使用 API 生成函数参数。
  • 调用具有模型生成的参数的函数:通过实际执行具有模型生成的参数的函数来闭合循环。


01、模型部署

单模型文件下载

使用ModelScope命令行工具下载单个模型,本文使用Qwen2-7B的GGUF格式:

modelscope download --model=qwen/Qwen2-7B-Instruct-GGUF --local_dir . qwen2-7b-instruct-q5_k_m.gguf

Linux环境使用

Liunx用户可使用魔搭镜像环境安装【推荐】

modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh


启动Ollama服务

ollama serve


创建ModelFile

复制模型路径,创建名为“ModelFile”的meta文件,其中设置template,使之支持function call,内容如下:

FROM /mnt/workspace/qwen2-7b-instruct-q5_k_m.gguf


# set the temperature to 0.7 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{ .System }}
{{- if .Tools }}


# Tools


You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>{{- range .Tools }}{{ .Function }}{{- end }}</tools>


For each function call, return a JSON object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>{{- end }}<|im_end|>{{- end }}
{{- range .Messages }}
{{- if eq .Role "user" }}
<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{- else if eq .Role "assistant" }}
<|im_start|>{{ .Role }}
{{- if .Content }}
{{ .Content }}
{{- end }}
{{- if .ToolCalls }}
<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}<|im_end|>
{{- else if eq .Role "tool" }}
<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{- end }}
{{- end }}
<|im_start|>assistant
{{ else }}{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}
"""


创建自定义模型

使用ollama create命令创建自定义模型

ollama create myqwen2 --file ./ModelFile


运行模型:

ollama run myqwen2


02、生成函数参数

安装依赖

!pip install scipy --quiet
!pip install tenacity --quiet
!pip install tiktoken --quiet
!pip install termcolor --quiet
!pip install openai --quiet


使用OpenAI的API格式调用本地部署的qwen2模型

import json
import openai
from tenacity import retry, wait_random_exponential, stop_after_attempt
from termcolor import colored  


MODEL = "myqwen2"
client = openai.OpenAI(
    base_url="http://127.0.0.1:11434/v1",
    api_key = "None"
)


实用工具

首先,让我们定义一些实用工具,用于调用聊天完成 API 以及维护和跟踪对话状态。

@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, tools=None, tool_choice=None, model=MODEL):
    try:
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            tools=tools,
            tool_choice=tool_choice,
        )
        return response
    except Exception as e:
        print("Unable to generate ChatCompletion response")
        print(f"Exception: {e}")
        return e
def pretty_print_conversation(messages):
    role_to_color = {
        "system": "red",
        "user": "green",
        "assistant": "blue",
        "function": "magenta",
    }


    for message in messages:
        if message["role"] == "system":
            print(colored(f"system: {message['content']}\n", role_to_color[message["role"]]))
        elif message["role"] == "user":
            print(colored(f"user: {message['content']}\n", role_to_color[message["role"]]))
        elif message["role"] == "assistant" and message.get("function_call"):
            print(colored(f"assistant: {message['function_call']}\n", role_to_color[message["role"]]))
        elif message["role"] == "assistant" and not message.get("function_call"):
            print(colored(f"assistant: {message['content']}\n", role_to_color[message["role"]]))
        elif message["role"] == "function":
            print(colored(f"function ({message['name']}): {message['content']}\n", role_to_color[message["role"]]))


基本概念
(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#basic-concepts)

这里假设了一个天气 API,并设置了一些函数规范和它进行交互。将这些函数规范传递给 Chat API,以便模型可以生成符合规范的函数参数。

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "format": {
                        "type": "string",
                        "enum": ["celsius", "fahrenheit"],
                        "description": "The temperature unit to use. Infer this from the users location.",
                    },
                },
                "required": ["location", "format"],
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "get_n_day_weather_forecast",
            "description": "Get an N-day weather forecast",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "format": {
                        "type": "string",
                        "enum": ["celsius", "fahrenheit"],
                        "description": "The temperature unit to use. Infer this from the users location.",
                    },
                    "num_days": {
                        "type": "integer",
                        "description": "The number of days to forecast",
                    }
                },
                "required": ["location", "format", "num_days"]
            },
        }
    },
]


如果我们向模型询问当前的天气情况,它将会反问,希望获取到进一步的更多的参数信息。

messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "hi ,can you tell me what's the weather like today"})
chat_response = chat_completion_request(
    messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='Of course, I can help with that. To provide accurate information, could you please specify the city and state you are interested in?', role='assistant', function_call=None, tool_calls=None)


一旦我们通过对话提供缺失的参数信息,模型就会为我们生成适当的函数参数。

messages.append({"role": "user", "content": "I'm in Glasgow, Scotland."})
chat_response = chat_completion_request(
    messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_qq8e5z9w', function=Function(arguments='{"location":"Glasgow, Scotland"}', name='get_current_weather'), type='function')])


通过不同的提示词,我们可以让它反问不同的问题以获取函数参数信息。

messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "can you tell me, what is the weather going to be like in Glasgow, Scotland in next x days"})
chat_response = chat_completion_request(
    messages, tools=tools
)
assistant_message = chat_response.choices[0].message
messages.append(assistant_message)
assistant_message
ChatCompletionMessage(content='Sure, I can help with that. Could you please specify how many days ahead you want to know the weather forecast for Glasgow, Scotland?', role='assistant', function_call=None, tool_calls=None)
messages.append({"role": "user", "content": "5 days"})
chat_response = chat_completion_request(
    messages, tools=tools
)
chat_response.choices[0]
Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_b7f3j7im', function=Function(arguments='{"location":"Glasgow, Scotland","num_days":5}', name='get_n_day_weather_forecast'), type='function')]))


并行函数调用

(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#parallel-function-calling)

支持一次提问中,并行调用多次函数

messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."})
messages.append({"role": "user", "content": "what is the weather going to be like in San Francisco and Glasgow over the next 4 days"})
chat_response = chat_completion_request(
    messages, tools=tools, model=MODEL
)


assistant_message = chat_response.choices[0].message.tool_calls
assistant_message
[ChatCompletionMessageToolCall(id='call_vei89rz3', function=Function(arguments='{"location":"San Francisco, CA","num_days":4}', name='get_n_day_weather_forecast'), type='function'),
ChatCompletionMessageToolCall(id='call_4lgoubee', function=Function(arguments='{"location":"Glasgow, UK","num_days":4}', name='get_n_day_weather_forecast'), type='function')]


使用模型生成函数

(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#how-to-call-functions-with-model-generated-arguments)

在这个示例中,演示如何执行输入由模型生成的函数,并使用它来实现可以为我们解答有关数据库的问题的代理。

本文使用Chinook 示例数据库(https://www.sqlitetutorial.net/sqlite-sample-database/)。


指定执行 SQL 查询的函数

(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#specifying-a-function-to-execute-sql-queries)

首先,让我们定义一些有用的函数来从 SQLite 数据库中提取数据。

import sqlite3


conn = sqlite3.connect("data/Chinook.db")
print("Opened database successfully")
def get_table_names(conn):
    """Return a list of table names."""
    table_names = []
    tables = conn.execute("SELECT name FROM sqlite_master WHERE type='table';")
    for table in tables.fetchall():
        table_names.append(table[0])
    return table_names




def get_column_names(conn, table_name):
    """Return a list of column names."""
    column_names = []
    columns = conn.execute(f"PRAGMA table_info('{table_name}');").fetchall()
    for col in columns:
        column_names.append(col[1])
    return column_names




def get_database_info(conn):
    """Return a list of dicts containing the table name and columns for each table in the database."""
    table_dicts = []
    for table_name in get_table_names(conn):
        columns_names = get_column_names(conn, table_name)
        table_dicts.append({"table_name": table_name, "column_names": columns_names})
    return table_dicts


现在可以使用这些实用函数来提取数据库模式的表示。

database_schema_dict = get_database_info(conn)
database_schema_string = "\n".join(
    [
        f"Table: {table['table_name']}\nColumns: {', '.join(table['column_names'])}"
        for table in database_schema_dict
    ]
)


与之前一样,我们将为希望 API 为其生成参数的函数定义一个函数规范。请注意,我们正在将数据库模式插入到函数规范中。这对于模型了解这一点很重要。

tools = [
    {
        "type": "function",
        "function": {
            "name": "ask_database",
            "description": "Use this function to answer user questions about music. Input should be a fully formed SQL query.",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {
                        "type": "string",
                        "description": f"""
                                SQL query extracting info to answer the user's question.
                                SQL should be written using this database schema:
                                {database_schema_string}
                                The query should be returned in plain text, not in JSON.
                                """,
                    }
                },
                "required": ["query"],
            },
        }
    }
]


执行 SQL 查询

(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#executing-sql-queries)

现在让我们实现实际执行数据库查询的函数。

def ask_database(conn, query):
    """Function to query SQLite database with a provided SQL query."""
    try:
        results = str(conn.execute(query).fetchall())
    except Exception as e:
        results = f"query failed with error: {e}"
    return results


使用 Chat Completions API 调用函数的步骤:

(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#steps-to-invoke-a-function-call-using-chat-completions-api)

步骤 1:向模型提示可能导致模型选择要使用的工具的内容。工具的描述(例如函数名称和签名)在“工具”列表中定义,并在 API 调用中传递给模型。如果选择,函数名称和参数将包含在响应中。

步骤 2:通过编程检查模型是否想要调用函数。如果是,则继续执行步骤 3。
步骤 3:从响应中提取函数名称和参数,使用参数调用该函数。将结果附加到消息中。
步骤 4:使用消息列表调用聊天完成 API 以获取响应。

messages = [{
    "role":"user", 
    "content": "What is the name of the album with the most tracks?"
}]


response = client.chat.completions.create(
    model='myqwen2', 
    messages=messages, 
    tools= tools, 
    tool_choice="auto"
)


# Append the message to messages list
response_message = response.choices[0].message 
messages.append(response_message)


print(response_message)
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_23nnhlv6', function=Function(arguments='{"query":"SELECT Album.Title FROM Album JOIN Track ON Album.AlbumId = Track.AlbumId GROUP BY Album.Title ORDER BY COUNT(*) DESC LIMIT 1"}', name='ask_database'), type='function')])
# Step 2: determine if the response from the model includes a tool call.   
tool_calls = response_message.tool_calls
if tool_calls:
    # If true the model will return the name of the tool / function to call and the argument(s)  
    tool_call_id = tool_calls[0].id
    tool_function_name = tool_calls[0].function.name
    tool_query_string = json.loads(tool_calls[0].function.arguments)['query']


    # Step 3: Call the function and retrieve results. Append the results to the messages list.      
    if tool_function_name == 'ask_database':
        results = ask_database(conn, tool_query_string)


        messages.append({
            "role":"tool", 
            "tool_call_id":tool_call_id, 
            "name": tool_function_name, 
            "content":results
        })


        # Step 4: Invoke the chat completions API with the function response appended to the messages list
        # Note that messages with role 'tool' must be a response to a preceding message with 'tool_calls'
        model_response_with_function_call = client.chat.completions.create(
            model="myqwen2",
            messages=messages,
        )  # get a new response from the model where it can see the function response
        print(model_response_with_function_call.choices[0].message.content)
    else: 
        print(f"Error: function {tool_function_name} does not exist")
else: 
    # Model did not identify a function to call, result can be returned to the user 
    print(response_message.content) 

The album "Greatest Hits" contains the most tracks

欢迎点赞关注我,获取更多关于 AI 的前沿资讯。别忘了将今天的内容分享给你的朋友们,让我们一起见证 AI 技术的飞跃!学习商务交流



相关推荐

MySQL慢查询优化:从explain到索引,DBA手把手教你提升10倍性能

数据库性能是应用系统的生命线,而慢查询就像隐藏在系统中的定时炸弹。某电商平台曾因一条未优化的SQL导致订单系统响应时间从200ms飙升至8秒,最终引发用户投诉和订单流失。今天我们就来系统学习MySQL...

一文读懂SQL五大操作类别(DDL/DML/DQL/DCL/TCL)的基础语法

在SQL中,DDL、DML、DQL、DCL、TCL是按操作类型划分的五大核心语言类别,缩写及简介如下:DDL(DataDefinitionLanguage,数据定义语言):用于定义和管理数据库结构...

闲来无事,学学Mysql增、删,改,查

Mysql增、删,改,查1“增”——添加数据1.1为表中所有字段添加数据1.1.1INSERT语句中指定所有字段名语法:INSERTINTO表名(字段名1,字段名2,…)VALUES(值1...

数据库:MySQL 高性能优化规范建议

数据库命令规范所有数据库对象名称必须使用小写字母并用下划线分割所有数据库对象名称禁止使用MySQL保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)数据库对象的命名要能做到见名识意,...

下载工具合集_下载工具手机版

迅雷,在国内的下载地位还是很难撼动的,所需要用到的地方还挺多。缺点就是不开会员,软件会限速。EagleGet,全能下载管理器,支持HTTP(S)FTPMMSRTSP协议,也可以使用浏览器扩展检测...

mediamtx v1.15.2 更新详解:功能优化与问题修复

mediamtxv1.15.2已于2025年10月14日发布,本次更新在功能、性能优化以及问题修复方面带来了多项改进,同时也更新了部分依赖库并提升了安全性。以下为本次更新的详细内容:...

声学成像仪:泄露监测 “雷达” 方案开启精准防控

声学成像仪背景将声像图与阵列上配装的摄像实所拍的视频图像以透明的方式叠合在一起,就形成了可直观分析被测物产生状态。这种利用声学、电子学和信息处理等技术,变换成人眼可见的图像的技术可以帮助人们直观地认识...

最稳存储方案:两种方法将摄像头接入威联通Qu405,录像不再丢失

今年我家至少被4位邻居敲门,就是为了查监控!!!原因是小区内部监控很早就停止维护了,半夜老有小黄毛掰车门偷东西,还有闲的没事划车的,车主损失不小,我家很早就配备监控了,人来亮灯有一定威慑力,不过监控设...

离岗检测算法_离岗检查内容

一、研发背景如今社会许多岗位是严禁随意脱离岗位的,如塔台、保安室、监狱狱警监控室等等,因为此类行为可能会引起重大事故,而此类岗位监督管理又有一定困难,因此促生了智能视频识别系统的出现。二、产品概述及工...

消防安全通道占用检测报警系统_消防安全通道占用检测报警系统的作用

一、产品概述科缔欧消防安全通道占用检测报警系统,是创新行业智能监督管理方式、完善监管部门动态监控及预警预报体系的信息化手段,是实现平台远程监控由“人为监控”向“智能监控”转变的必要手段。产品致力于设...

外出住酒店、民宿如何使用手机检测隐藏的监控摄像头

最近,一个家庭在他们的民宿收到了一个大惊喜:客厅里有一个伪装成烟雾探测器的隐藏摄像头,监视着他们的一举一动。隐藏摄像头的存在如果您住在酒店或民宿,隐藏摄像头不应再是您的担忧。对于民宿,房东应报告所有可...

基于Tilera众核平台的流媒体流量发生系统的设计

曾帅,高宗彬,赵国锋(重庆邮电大学通信与信息工程学院,重庆400065)摘要:设计了一种基于Tilera众核平台高强度的流媒体流量发生系统架构,其主要包括:系统界面管理模块、服务承载模块和流媒体...

使用ffmpeg将rtsp流转流实现h5端播放

1.主要实现rtsp转tcp协议视频流播放ffmpeg下载安装(公认业界视频处理大佬)a、官网地址:www.ffmpeg.org/b、gitHub:github.com/FFmpeg/FFmp…c、推...

将摄像头视频流从Rtsp协议转为websocket协议

写在前面很多通过摄像头拿到的视频流格式都是Rtsp协议的,比如:海康威视摄像头。在现代的浏览器中,已经不支持直接播放Rtsp视频流,而且,海康威视提供的本身的webSdk3.3.0视频插件有很多...

华芸科技推出安全监控中心2.1 Beta测试版

全球独家支持hdmi在线实时监看摄像机画面,具单一、循环或同时监看四频道视频影像,可透过华芸专用红外线遥控器、airemote或是键盘鼠标进行操作,提供摄像机频道增购服务,满足用户弹性扩增频道需...