百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python 使用 JsonPath 完成接口自动化测试中参数关联和数据验证

liuian 2025-05-30 16:05 19 浏览

背景:

  1. 接口自动化测试实现简单、成本较低、收益较高,越来越受到企业重视
  2. RESTFul 风格的 API 设计大行其道
  3. JSON 成为主流的轻量级数据交换格式

痛点

接口关联

  • 接口关联也称为关联参数。在应用业务接口中,完成一个业务功能时,有时候一个接口可能不满足业务的整个流程逻辑,需要多个接口配合使用,简单的案例如:B 接口的成功调用依赖于 A 接口,需要在 A 接口的响应数据(response)中拿到需要的字段,在调用 B 接口的时候,传递给 B 接口作为 B 接口请求参数,拿到后续响应的响应数据。
  • 接口关联通常可以使用正则表达式去提取需要的数据,但对于 JSON 这种简洁、清晰层次结构、轻量级的数据交互格式,使用正则未免有点杀鸡用牛刀的感觉(是的,因为我不擅长写正则表达式),我们需要更加简单、直接的提取 JSON 数据的方式。

数据验证

  • 这里的数据验证指的是对响应结果进行数据的校验
  • 接口自动化测试中,对于简单的响应结果(JSON),可以直接和期望结果进行比对,判断是否完全相等即可。如
     {"status":1,"msg":"登录成功"}
  • 对于格式较复杂,尤其部分数据存在不确定性、会根据实际情况变化的响应结果,简单的判断是否完全相等(断言)通常会失败。如:
  {"status":1,"code":"10001","data":[{"id":1,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"1","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-05-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":2,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"2","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-06-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":3,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"3","unfinishedInterest":"1.0","unfinishedPrincipal":"100.00","repaymentDate":"2018-07-27 12:24:01","actualRepaymentDate":null,"status":"0"}],"msg":"获取信息成功"}

上面的 JSON 结构嵌套了很多信息,完整的匹配几乎不可能成功。比如其中的 createTime 信息,根据执行接口测试用例的时间每次都不一样。同时这个时间是响应结果中较为次要的信息,在进行接口自动化测试时,是可以选择被忽略的。

  • 我们需要某种简单的方法,能够从 JSON 中提取出我们真正关注的信息(通常也被称为关键信息)。如提取出 status 的值为 1,data 数组中每个对象的 investId 都为 1,data 中第三个对象的 unfinishedPrincipal 值为 100.00,只要这三个关键信息校验通过,我们就认为响应结果没有问题。

解决方案

JsonPath 可以完美解决上面的痛点。通过 JsonPath 可以从多层嵌套的 JSON 中解析出所需要的值。

JsonPath

  • JsonPath 参照 XPath 解析 XML 的方式来解析 JSON
  • JsonPath 用符号 $ 表示最外层对象,类似于 Xpath 中的根元素
  • JsonPath 可以通过点语法来检索数据,如:
  $.store.book[0].title 
  • 也可以使用中括号[]的形式,如
  $['store']['book'][0]['title']

运算符(Operators)

运算符

说明

$

根元素

@

当前元素

*

通配符,可以表示任何元素

..

递归搜索

.

子节点(元素)

['' (, '')]

一个或者多个子节点

[ (, )]

一个或者多个数组下标

[start:end]

数组片段,区间为[start,end)

[?()]

过滤器表达式,其中表达式结果必须是 boolean 类型,如可以是比较表达式或者逻辑表达式

JsonPath 案例

JSON

  {
    "lemon": {
        "teachers": [
            {
                "id": "101",
                "name": "华华",
                "addr": "湖南长沙",
                "age": 25
            },
             {
                "id": "102",
                "name": "韬哥",
                "age": 28
            },
            {
                "id": "103",
                "name": "Happy",
                "addr": "广东深圳",
                "age": 16
            },
             {
                "id": "104",
                "name": "歪歪",
                "addr": "广东广州",
                "age": 29
            }
        ],
        "salesmans": [
            {
                "id": "105",
                "name": "毛毛",
                "age": 17
            },
             {
                "id": "106",
                "name": "大树",
                "age": 27
            }
        ]
    },
 "avg": 25
}

JsonPath 例子及说明

JsonPath

路径说明

$.lemon.teachers[*].name

获取所有老师的的名称

$..name

获取所有人的名称

$.lemon.*

所有的老师和销售

$.lemon..age

所有人的年龄

$..age

所有人的年龄

$.lemon.teachers[*].age

所有老师的年龄

$.lemon.teachers[3]

索引为 3(第 4 个)老师的信息

$..teachers[3]

索引为 3(第 4 个)老师的信息

$.lemon.teachers[-2]

倒数第 2 个老师的信息

$..teachers[-2]

倒数第 2 个老师的信息

$..teachers[1,2]

第 2 到第 3 个老师的信息

$..teachers[:2]

索引 0(包含)到索引 2(不包含)的老师信息

$..teachers[1:3]

索引 1(包含)到索引 3(不包含)的老师信息

$..teachers[-2:]

最后的两个老师的信息

$..teachers[2:]

索引 2 开始的所有老师信息

$..teachers[?(@.addr)]

所有包含地址的老师信息(jsonpath_rw 不支持)

$.lemon.teachers[?(@.age < 20)]

所有年龄小于 20 的年龄信息(jsonpath_rw 不支持)

使用 jsonpath 模块

安装 jsonpath 模块

    pip install jsonpath==0.75

解析

  # 1:导入相关模块
import json
import jsonpath

# 2: 准备json字符串
jsonStr = '''
          {
    "lemon": {
        "teachers": [
            {
                "id": "101",
                "name": "华华",
                "addr": "湖南长沙",
                "age": 25
            },
             {
                "id": "102",
                "name": "韬哥",
                "age": 28
            },
            {
                "id": "103",
                "name": "Happy",
                "addr": "广东深圳",
                "age": 16
            },
             {
                "id": "104",
                "name": "歪歪",
                "addr": "广东广州",
                "age": 29
            }
        ],
        "salesmans": [
            {
                "id": "105",
                "name": "毛毛",
                "age": 17
            },
             {
                "id": "106",
                "name": "大树",
                "age": 27
            }
        ]
    },
 "avg": 25
}
'''

# 3:加载json字符串为json对象
json_obj = json.loads(jsonStr)

# 4:使用jsonpath模块的jsonpath方法提取信息
# eg1: 提取所有包含addr属性的老师信息,结果为list类型
results = jsonpath.jsonpath(json_obj,"$..teachers[?(@.addr)]")  
print(results)
# 输出结果:[{'id': '101', 'name': '华华', 'addr': '湖南长沙', 'age': 25}, {'id': '103', 'name': 'Happy', 'addr': '广东深圳', 'age': 16}, {'id': '104', 'name': '歪歪', 'addr': '广东广州', 'age': 29}]

# eg2:提取所有年龄小于20岁的老师的name,结果为list类型
results2 = jsonpath.jsonpath(json_obj,"$.lemon.teachers[?(@.age < 20)].name")  
print(results2)
# 输出结果为:['Happy']

使用 jsonpath_rw

安装 jsonpath_rw 模块

   pip install jsonpath-rw

解析

  # 1:导入相关模块
import json
from jsonpath_rw import jsonpath, parse

# 2: 准备json字符串
jsonStr = '''
  # 同上(略)
'''

# 3:加载为json对象
json_obj = json.loads(jsonStr)

# 4:采用parse创建jsonpath对象(该案例是得到所有的老师name)
jsonpath_expr = parse('$.lemon.teachers[*].name')

# 5:通过jsonPath检索json后返回匹配的数据,类型是DatumInContext的list
datumInContexts = jsonpath_expr.find(json_obj)
# 采用列表推导式检索出所有匹配的值
values = [datum.value for datum in datumInContexts]
print(values)
# 输出结果为:['华华', '韬哥', 'Happy', '歪歪']

# 案例2:提取索引为4的老师的name
jsonpath_expr = parse('$.lemon.teachers[3].name')
datumInContexts = jsonpath_expr.find(json_obj)
print(datumInContexts)
values = [datum.value for datum in datumInContexts]
print(values)
# 结果为:['歪歪']

更多 jsonpath_rw 用法参考:

https://pypi.org/project/jsonpath-rw/



相关推荐

总结下SpringData JPA 的常用语法

SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...

解决JPA在多线程中事务无法生效的问题

在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...

PostgreSQL系列(一):数据类型和基本类型转换

自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...

基于MCP实现text2sql

目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...

ORACLE 错误代码及解决办法

ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...

从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%

作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...

010:通过 MCP PostgreSQL 安全访问数据

项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...

发现了一个好用且免费的SQL数据库工具(DBeaver)

缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...

微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅

IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...

数据库管理工具Navicat Premium最新版发布啦

管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...

50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?

北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...

揭秘:一条SQL语句的执行过程是怎么样的?

数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...

各家sql工具,都闹过哪些乐子?

相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...

详解PG数据库管理工具--pgadmin工具、安装部署及相关功能

概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...

Enpass for Mac(跨平台密码管理软件)

还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...