Spark读取kafka复杂嵌套json的最佳实践
liuian 2025-05-30 16:05 18 浏览
随着互联网的更进一步发展,信息浏览、搜索以及电子商务、互联网旅游生活产品等将生活中的流通环节在线化,对于实时性的要求进一步提升,而信息的交互和沟通正在从点对点往信息链甚至信息网的方向发展,这样必然带来数据各个维度的交叉关联,数据爆炸也不可避免,因此流式处理应运而生,解决实时框架问题,助力大数据分析。
kafka是一个高性能的流式消息队列,适用于大数据场景下的消息传输、消息处理和消息存储,kafka可靠的传递能力让它成为流式处理系统完美的数据来源,很多基于kafka构建的流式处理系统都将kafka作为唯一可靠的数据来源。如Apache Storm、 Apache Spark Streaming 、Apache Flink 、Apache Samza 等。
json是kafka消息中比较常见的格式,对于单层json数据的读取和解析相对简单,但是在真实kafka流程处理的业务中,很多情况下都是json嵌套复杂格式消息。Spark1.1以后的版本存在一些实用的 SparkSQL函数,帮助解决复杂的json数据格式,实用函数包括get_json_object、from_json和explode等。
01、Spark框架中的基本概念和内置函数
RDD:Spark的基本计算单元,它是一个弹性可复原的分布式数据集。
Dataframe:定义为指定到列的数据集(Dataset)。DFS类似于关系型数据库中的表或者像R/Python 中的Dataframe ,可以说是一个具有良好优化技术的关系表。
Spark SQL:它是Spark的其中一个模块,用于结构化数据处理,Spark SQL提供的接口为Spark提供了有关数据结构和正在执行的计算的更多信息,Spark SQL会使用这些额外的信息来执行额外的优化。
from_json:Spark SQL内置的函数,从一个json 字符串中按照指定的schema格式抽取出来作为DataFrame的列,第一个参数为列名,以#34;column_name"表示,第二个参数为定义的数据结构
get_json_object:Spark SQL内置的函数,从一个json字符串中根据指定的json路径抽取一个json对象,第一个参数为column名,用#34;column_name"表示,第二个参数为要取的json字段名,"$.字段名"表示。
explode:Spark SQL内置的函数,可以从规定的Array或者Map中使用每一个元素创建一列,主要用于数组数据的展开,参数为column名,用#34;column_name"表示。
02、Kafka复杂嵌套json解析
1)什么是复杂json?
json是一种轻量级的数据交换标准,具体以逗号分隔的key:value键值对的串形式,主要表现形式包括两种:{对象},[数组],其中key以字符串表达,value包括字符串、数值、boolean值、对象和数组(可嵌套)。在复杂的json数据格式中,通常json数据会有嵌套,每个层级的结构不完全相同,value中不同类型进行混合使用。
下图为一份简单json格式数据:
期望处理的结果为下图的二维表,json串中的key(id,sepallength,sepalwidth,
petallength,petalwidth,label)作为二维表的列,value作为表的一行数据。
下图为一份复杂json格式数据:
期望处理的结果为下图的二维表,json串中单层key(id,createTime,deviceCode)和需要展开的数组trajectory中单个元素key(x,y)作为二维表的列,value是将数组trajectory中所有的元素展开成多行后,与其他列的数据进行对齐。
2)整体思路
Kafka消费者收到复杂嵌套json消息后,一共有两步。
第一步:首先把这批json字符消息转换成分布式数据集RDD[String]中,再将RDD[String]转换成列名为`json`的DataFrame,然后通过Spark SQL内置函数get_json_object将json对象中的`id`、`createTime`、`deviceCode`、`data.trajectory`分别生成新列,并构建一个包含这些列的新DataFrame;
第二步:获取需要展开的列`data.trajectory`的schema(元数据信息),然后由SparkSQL内置函数from_json将列`data.trajectory`的字符内容转换成数组对象,最后通过SparkSQL内置函数explode将`data.trajectory`中的数组中每个元素展开成多行。
基于spark解析复杂json流程设计图:
3)Spark读取kafka复杂json消息解析核心代码
json格式数据如果使用现有的工具,用户常常需要开发出复杂的程序来读写分析系统中的json数据,Spark SQL对json数据的支持是从1.1版本开始发布,并且在Spark 1.2版本中进行了加强。
下图的代码是通过Spark SQL内置的json函数将复杂json转换成一张二维表,并支持将json中数组数据进行展开处理。
4)kafka复杂json解析在Tempo AI中的应用
Tempo AI机器学习平台将kafka数据作为数据挖掘分析标准数据源,既支持简单的json解析,也支持复杂json解析,先进行基础配置读取消息数据,查看消息内容,然后进行映射配置,将数据内容与对应元信息进行匹配,最后可以预览数据内容。
基础配置,包括连接配置和消息信息配置,如下图所示:
在“消息内容”页面,查看提取的单条Kafka消息内容,如下图:
在“映射配置”页面,根据左侧预览的消息内容,通过点击选择左侧的消息到右侧,进行映射配置,可以设置需要展开的数组,如下图:
kafka输入节点配置完成后,执行AI流程,查看洞察信息,如下图所示:
综上,json是一种轻量级的数据交换格式,易于阅读和编写,目前是一种主流的数据格式,json字符串作为消息在kafka消息流中传递应用很广泛,通过Tempo 机器学习平台封装的Spark SQL解析复杂json的能力,极大简化了使用json数据的终端的相关工作,使客户更专注于自己的业务。
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)