一场pandas与SQL的巅峰大战(五)
liuian 2025-05-14 14:51 5 浏览
本文目录:
数据准备
MySQL 计算累计百分比
1.不分组情况
2.分组情况
Hive SQL计算累计百分比
1.不分组情况
2.分组情况
pandas计算累计百分比
1.不分组情况
cumsum函数
expanding函数
rolling函数
2.分组情况
cumsum函数
expanding函数
rolling函数
小结
在之前的四篇系列文章中,我们对比了pandas和SQL在数据方面的多项操作。
具体来讲,第一篇文章一场pandas与SQL的巅峰大战涉及到数据查看,去重计数,条件选择,合并连接,分组排序等操作。
第二篇文章一场pandas与SQL的巅峰大战(二)涉及字符串处理,窗口函数,行列转换,类型转换等操作。
第三篇文章一场pandas与SQL的巅峰大战(三)围绕日期操作展开,主要讨论了日期获取,日期转换,日期计算等内容。
第四篇文章一场pandas与SQL的巅峰大战(四)学习了在MySQL,Hive SQL和pandas中用多种方式计算日环比,周同比的方法。
本篇文章一起来探讨如何在SQL和pandas中计算累计百分比。仍然分别在MySQL,Hive SQL和pandas中用多种方案来实现。
◆ ◆ ◆ ◆ ◆
数据准备
我们仍然使用前一篇的orderamt数据,数据导入方式可以参考之前的内容。需要分别在MySQL,Hive,pandas中进行数据导入,在此不作赘述。在我的公众号后台回复“对比五”,可以获取本文全部代码和数据。数据的样例为:
我们的目标是,计算累计到当天的销售额占总销售额的比例。在实现时,首先分别计算出累计到当天的销售金额和总计的金额,然后就可以很方便的求出比例了。
MySQL计算累计百分比
1.不分组情况
最直观的思路是,对每一行的金额,都累加从第一行到当前行的金额。在MySQL中,可以考虑自连接的方式,但需要使用不等值连接。代码和结果如下:
select a.id, a.dt, a.orderamt, sum(b.orderamt) as cum--对b表的金额进行求和
from t_orderamt ajoin t_orderamt bon a.dt >= b.dt--使用不等值连接
group by a.id, a.dt, a.orderamt
图中的cum列即是我们想要求的累加值。而所有销售金额的总计值,我们可以直接使用sum求出。
select sum(orderamt) as total
from t_orderamt
结合上面的两段SQL,就可以求得累计的百分比,注意连接条件我们使用了1=1这种恒成立的方式。代码和结果如下:
select c.id, c.orderamt, c.cum, concat(round((c.cum / d.total) * 100, 2), '%') as cum_pct
from (select a.id, a.dt, a.orderamt, sum(b.orderamt) as cum
from t_orderamt ajoin t_orderamt bon a.dt >= b.dtgroup by a.id, a.dt, a.orderamt) c
left join
(select sum(orderamt) as totalfrom t_orderamt
) d on 1 = 1
2.分组情况
需要思考:我们的原始数据是两个月的数据,目前我们的算法是把两个月的销售额累计到一起算的。但在实际中可能更多会关心每天的累计销售额分别占当月的百分比。如何能按照月份分组求每组的累计百分比呢?
首先仍然是求累计金额,但要分月累计。在上面的基础上加上月份相等条件即可,从结果中可以看到,在11月和12月cum列是分别累计的。
select substr(a.dt, 1, 7) as mon, a.dt, a.orderamt, sum(b.orderamt) as cum
from t_orderamt a
join t_orderamt bon a.dt >= b.dt and substr(a.dt, 1, 7) = substr(b.dt, 1, 7)--增加了这个条件
group by substr(a.dt, 1, 7), a.dt, a.orderamt
求每月总计金额的代码比较简单:
select substr(a.dt, 1, 7) as mon, sum(orderamt) as totalfrom t_orderamt agroup by substr(a.dt, 1, 7)
同样的,我们把两段代码进行合并,就得到每月的累计百分比情况:
select c.mon, c.dt, c.orderamt, c.cum, d.total,concat(round((c.cum / d.total) * 100, 2), '%') as cum_pct
from(select substr(a.dt, 1, 7) as mon, a.dt, a.orderamt, sum(b.orderamt) as cum
from t_orderamt a
join t_orderamt b
on a.dt >= b.dt and substr(a.dt, 1, 7) = substr(b.dt, 1, 7)
group by substr(a.dt, 1, 7), a.dt, a.orderamt) c
left join(select substr(a.dt, 1, 7) as mon, sum(orderamt) as total
from t_orderamt a
group by substr(a.dt, 1, 7)) d on c.mon = d.mon
Hive 计算累计百分比
1.不分组情况
Hive SQL中我们可以沿用MySQL中的思路,但需要注意,Hive 不支持在on中写不等号的连接条件,虽然可以采用where的方式改造一下,代码如下所示。但这并不是最优的方案。我们可以使用Hive中的窗口函数,很方便的计算累计值。
--where方法
select a.id, a.dt, a.orderamt, sum(b.orderamt) as cum--对b表的金额进行求和
from t_orderamt ajoin t_orderamt bon 1=1where a.dt >= b.dt--使用不等值连接
group by a.id, a.dt, a.orderamt--窗口函数select *, sum(orderamt) over(order by dt) as cum
from t_orderamt;
两段代码的执行结果都如下图所示:
接下来我们重点看窗口函数的方式。在计算总计值的时候和前面MySQL的方式类似,累计百分比的计算也是需要把两部分代码结合在一起。
select c.id, c.dt, c.orderamt, c.cum, concat(round((c.cum / d.total) * 100, 2), '%') as cum_pcfrom(select *, sum(orderamt) over(order by dt) as cum from t_orderamt) cleft join(select sum(orderamt) as totalfrom t_orderamt) d on 1 = 1--在Hive中这个条件可以不写
2.分组情况
分组的情况,在窗口函数里是可以用partition by直接指定分组的,见如下代码
select id, substr(dt, 1, 7) as mon, dt, orderamt,
sum(orderamt) over(partition by substr(dt, 1, 7) order by dt) as cum
from t_orderamt;
可以看到,同前面的分组情况一样,在11月和12月cum列是分别累计的。
接下来也很容易就写出分组计算累计百分比的代码,结果和上面也是一致的。
select c.mon, c.dt, c.orderamt, c.cum, d.total,concat(round((c.cum / d.total) * 100, 2), '%') as cum_pct
from(select id, substr(dt, 1, 7) as mon, dt, orderamt, sum(orderamt) over(partition by substr(dt, 1, 7) order by dt) as cum
from t_orderamt) c
left join(select substr(dt, 1, 7) as mon, sum(orderamt) as total
from t_orderamt group by substr(dt, 1, 7)) d on c.mon = d.mon
pandas计算累计百分比
在pandas中,提供了专门的函数来计算累计值,分别是cumsum函数,expanding函数,rolling函数。我们一起来看一下使用三种函数计算分组和不分组累计百分比的方法。
1.不分组情况
cumsum函数
cumsum是pandas中专门用于计算累计和的函数。类似的函数还有cumprod计算累计积,cummax计算前n个值的最大值,cummin计算前n个值的最小值。
import pandas as pd
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['cum_amt'] = orderamt['amt'].cumsum()
orderamt.head(15)
直接对amt列使用cumsum函数即可计算累计值,结果和用SQL计算得到的一致。
计算累计的百分比也很容易。
orderamt['cum_amt_pct'] = orderamt['cum_amt'] / orderamt['amt'].sum(orderamt.head(15)
关于结果如何显示成百分比的形式,可以参考上一篇文章,此处略 。
expanding函数
pandas中的expanding函数是窗口函数的一种,它不固定窗口的大小,而是进行累计的计算。类似于cumsum(),但更强大。
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['mon'] = orderamt['dt'].dt.strftime('%Y-%m')#得到字符串形式的月份
orderamt['cum_expand'] = orderamt.expanding(min_periods=1)['amt'].sum()
orderamt.head(15)
参数min_periods表示最小的观测窗口,默认为1,可以设置为其他值,但如果窗口内记录数不足该值,则会显示NA。
有了累计值,计算累计的百分比,可以按照cumsum中的方法进行,此处省略。
rolling函数
rolling函数与expanding相比,主要是固定了窗口大小。当窗口超过dataframe的长度时,可以实现与expanding同样的效果。上面的代码使用rolling函数的方式可以改写如下,注意指定了window参数为len(orderamt):
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['mon'] = orderamt['dt'].dt.strftime('%Y-%m')#得到字符串形式的月份
orderamt['cum_roll'] = orderamt.rolling(window=len(orderamt), min_periods=1)['amt'].sum()
orderamt.head(15)
此处同样省略计算累计百分比的代码。
2.分组情况
cumsum函数
#添加pandas显示设置,显示所有行
pd.set_option('display.max_rows', None)
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['mon'] = orderamt['dt'].dt.strftime('%Y-%m')#分组后对amt求累计和
orderamt['cum_mon'] = orderamt.groupby('mon')['amt'].cumsum()
orderamt
接下来计算分组的总计值,这里用到了pandas中的transform函数,可以把分组后计算的总计值写入原dataframe。如果你不是很理解,可以参考下面这篇文章,讲的很清楚。
https://www.jianshu.com/p/509d7b97088c
orderamt['mon_total'] = orderamt.groupby('mon')["amt"].transform('sum'orderamt['grp_cum_pct'] = orderamt['cum_mon'] / orderamt['mon_total']orderamt
结果和前面SQL计算的是一致的。此处同样省略了转换百分比格式的代码,可参考前一篇文章。
expanding函数
分组情况下使用expanding函数需要和groupby结合,注意得到的结果是多重索引,需要取values才能赋值给原dataframe。
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['mon'] = orderamt['dt'].dt.strftime('%Y-%m')
orderamt_mon_group = orderamt.groupby('mon').expanding(min_periods=1)['amt'].sum()
#这里的orderamt_mon_group索引会有两重,我们直接取values的值就可以和原dataframe拼接在一起
orderamt['orderamt_mon_group'] = orderamt_mon_group.values
orderamt
接下来就可以用前面同样的方法,计算分组的总计值,然后求得分组累计百分比了。
rolling函数
通过上文我们知道,rolling函数与expanding函数的代码几乎一样,需要加上window参数。如下所示:
orderamt = pd.read_excel('orderamt.xlsx')
orderamt['mon'] = orderamt['dt'].dt.strftime('%Y-%m')
orderamt_mon_group_roll = orderamt.groupby('mon').rolling(len(orderamt),min_periods=1)['amt'].sum()
#这里的orderamt_mon_group_roll索引会有两重,我们直接取values的值就可以和原dataframe拼接在一起
orderamt['orderamt_mon_group_roll'] = orderamt_mon_group_roll.values
orderamt
结果和上面的是一致的。
至此,我们用多种方法实现了对于累计百分比的计算。
小结
本篇我们计算了分组和不分组情况的累计百分比。在MySQL中用了不等值连接的方法,在Hive SQL中使用了sum窗口函数。在pandas中学习了cumsum,expanding,rolling函数,最终都需要将累加值除以总计值得出累计百分比。本文代码较多,您可以在公众号后台回复“对比五”可以获取本文pdf版本,代码,数据等进行实战,希望对你有所帮助。
◆ ◆ ◆ ◆ ◆
推荐阅读:
1.一场pandas与SQL的巅峰大战
2.一场pandas与SQL的巅峰大战(二)
3.一场pandas与SQL的巅峰大战(三)
4.一场pandas与SQL的巅峰大战(四)
5.常用Hive函数的学习和总结
相关推荐
- 【常识】如何优化Windows 7
-
优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...
- 系统优化!Windows 11/10 必做的十个优化配置
-
以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...
- 最好用音频剪辑的软件,使用方法?
-
QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...
- Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑
-
前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...
- Motion for Vue:为Vue量身定制的强大动画库
-
在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...
- CSS view():JavaScript 滚动动画的终结
-
前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...
- 「大数据」 hive入门
-
前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...
- 青铜时代的终结:对奖牌架构的反思
-
作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...
- 解析IBM SQL-on-Hadoop的优化思路
-
对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...
- 交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较
-
图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...
- 深入解析全新 AWS S3 Tables:重塑数据湖仓架构
-
在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...
- Apache DataFusion查询引擎简介
-
简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...
- 大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)
-
一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...
- 比较前 3 名Schema管理工具
-
关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...
- 大数据技术之Flume
-
第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)