Python能做出BI软件的联动图表效果?这可能是目前唯一的选择
liuian 2025-05-14 14:50 15 浏览
此系列文章收录在公众号中:数据大宇宙 > 数据可视化 > py
转发本文并私信我"python",即可获得Python资料以及各种心得(持续更新的)
江湖流传一句话:"字不如表,表不如图",在 Python 中数据可视化有许多选择,但是大多数的库在语法简洁与灵活度不能平衡,本系列将探讨数据探索时如何使用合适的数据可视化库完成工作。
本系列或多或少涉及一些 pandas 的骚操作(网上很难看到相关的资料),其并非可视化的重点,不会多做讲解。
一切技巧与应用,尽在 pandas 专栏中:
前言
不管是在数据探索还是报告阶段,数据可视化都是一个非常有用的工具。今天我们来看看如何使用四象限图(波士顿矩阵图),为店铺销售员分门别类。本系列我将尽可能使用不同的工具制作。
计划中的工具:
- Python 的 seaborn
- Python 的 altair (能做出动态图,这是目前能比较方便做出图表之间联动的库)
- Python 的 plotly (能做出动态图,这是一个非常容易学习的库,前提是找到正确的思路)
- Power BI
- Tabluea
- Excel
今天的主角是 altair ,为了展示 altair 的特点,本文先从制作单店的四象限图开始,最后制作联动的多店四象限图。
分析思路可以直接参考上一篇文章:
使用Python的seaborn 包做出波士顿矩阵图,改善店铺销售水平
为什么需要介绍多个 Python 的可视化库?因为它们各有特点,而且我不喜欢太复杂的东西,总是在找一个最简单的可视化库。这也是我为可视化专栏做的准备工作
导入包代码如下:
用你的分析能力,提供改善建议
这次案例数据比上一节 seaborn 的多了一个维度,订单数据包含多个店的数据:
- 每一行记录表示,某订单的信息(单价多少,数量多少,是哪个店的哪位销售员负责)
- 日期列不重要,因为我们只分析一天的数据
每位销售员接待客人的记录:
- 每个店的每位销售员接待的人数
现在你要根据这些数据,得到这些问题的答案:
- 换掉其中某几位员工(意味着裁员),应该裁掉谁?
- 从中选出某一位员工,对其它员工进行培训和销售技能分享。应该选谁分享,哪些人需要被培训?
分析指标
沿用上一节的2个重要指标:
- 客单价:能反映每个顾客的质量,这其实与大环境因素(店铺位置,商品组合等)有关,也能反映销售能力。
- 成交率:这就能直观反映销售员的能力
假设大环境元素相对固定的情况下,我们就可以使用以上指标分析销售员的水平
使用 pandas 能非常容易关联2个数据表,并且简单求出每个订单的总价:
通过汇总,得到最终指标维度数据:
- 这与上一节 seaborn 篇没有多大区别
接下来将使用 altair 制作四象限图,顺带了解一下他有趣的图像语法。
一开始你会觉得使用 altair 需要比较多的代码,但实际上他非常灵活,只需要一点小技巧就能用任何我们喜欢的方式调用。
静态图
四象限图实际是散点图 + 线图(水平或垂直线),下面是上一节使用 seaborn 做的图。
而 altair 没有严格按图表类型进行区分,而是让你选择数据点的形状。
作图需要3个步骤:
- 确定数据源
- 把数据源中的字段与坐标系关联
- 选择数据的形状
现在按上述的步骤,选择一个店,做出散点图:
- 行2:步骤1,确定数据源,使用 alt.Chart(数据源) ,能直接支持 pandas 的 DataFrame 。注意 Chart 是实例化,首字母要大写
- 行3:步骤2,通过 encode 方法,设定坐标轴的字段。alt.X('客单价') 使得数据源中的 客单价 字段绑定在 x 轴上。同理绑定 y轴。同样,alt.X 与 Y 都是大写
- 行4:步骤3,mark_point ,表示图表中的数据使用"点"这种形状显示
现在能得到一个散点图:
- 实际形状点默认是空心圆圈,我们能通过简单改变最后的 mark_xxx 方法,即可修改每个数据点的形状
现在还需要线图:
- 行2:数据源不用改
- 行3:由于数据源是每个销售员的数据,而现在需要的是客单价的平均,因此在绑定 x 轴的时候,直接指定对客单价做平均操作
- 行4:mark_rule 表示画一条线
现在只是画出客单价的平均线,同理得到成交率的平均线:
- 行3:注意成交率是在 y 轴,因此使用 alt.Y
现在我们得到3个图表,只需要简单把它们叠加起来就可以:
- 行19:只要简单把各个图表相加即可叠加
这么多的代码,这包有啥好用!?
细看上面的代码,我们发现3个图表很多定义部分是一模一样的。
这是理所当然的,因为这个图表制作流程就是基于很多共性的东西。
进一步简化即可:
- 行1:数据源一致,直接定义数据源即可
- 行3-6:使用定义的数据源做散点图
- 行8:2个平均线图基于同样的数据源,同样的数据形状。直接定义一个 线图 表示
- 行10-11:使用定义的线图,分别映射不同的指标即可
这样的作图形式非常灵活直观,比如,为图表的每个点加上标签:
- 行13:数据标签,其实与散点图的唯一区别就是图形是文字,而非使用 "点形状"。因此,直接使用定义的 散点图 作为基础,通过 mark_text 修改数据形状。通过 encode,把字段 销售员 绑定到 图表的 text 属性上。
- 其中通过 dy 参数,让显示的文本向上偏移10个像素
- 注意,此时标签图的 encode 中的 x 轴 与 y 轴实际与 散点图一致(point)
- 行15:把标签图叠加即可
到这里,我们只是在做静态图,其实 altair 真正厉害之处是动态图表,并且能做出图表之间的联动。
整体店铺销售水平可视化
为了方便后续的代码编写,把一些通用过程定义到函数中:
- 这个完全可以作为不同项目的通用函数
现在用所有店铺的销售员指标,制作四象限图:
代码没啥好说的,如果此时我们打上标签,必然导致图表内容密密麻麻。
现在加个提示标签,当鼠标移到数据点上,显示该数据点的信息:
- 行5:在 encode 中,设置 tooltip 参数,即可绑定需要显示的字段名字
如下是动图:
encode 方法中能让你把数据绑定在图表很多属性上,比如大小,颜色等等。
现在虽然通过提示标签能让用户选择性查看某个点的信息,但是在分析的时候,我们更多地希望以店铺为单位进行观察。
接下来,我们使用 altair 制作出 BI 软件常见的图表联动效果
不同维度的图表联动
现在希望同时展示两个图表,一个是之前制作的多店四象限图,另一个是不同店铺的销售额柱状图。
通过点击店铺销售额的柱状图,旁边的四象限图高亮显示该店的销售员数据点。效果如下:
接下来,我会把一些过程通过自定义函数包装。
与大多数 BI 软件可视化的逻辑一样,我们需要使用同一份数据源制作不同的图表。
因此,我们需要使用 altair 的数据转换功能对数据做汇总:
- 行2-6:transform_aggregate ,聚合操作,相当于分组统计,其中参数 groupby 定义了按 销售员 与 店名 做分组
- 行7-10:transform_calculate ,简单的计算操作。注意在引用字段时需要使用 "datum.字段名"。这里可以使用之前分组统计结果的字段
使用这个数据源做四象限图即可:
- 由于数据源不再使用 pandas 的 DataFrame ,无法从中识别出数据类型,我们需要在绑定的时候,在字段后使用"冒号+类型"标记。
- 比如"客单价:Q" ,Q 表示数据是连续型数据
- '店名:N' ,N 常用于类别型数据
然后,使用"订单数据源(order_src)" 制作店铺销售额柱状图:
把2个图表并列放置,只需要使用 逻辑或运算符"|" 即可:
整体代码如下:
现在图表已经有了,但是缺少交互联动。在以上的代码上加上一些联动的定义,就可以做到。
首先,定义"鼠标点击行为":
- 行5:alt.selection_single ,定义单选行为。
- 其中参数 fields 指定选中的为字段"店名",这使得点击时让数据源只保留选中的店名的记录
- 参数 on 表示单击行为
- 行20:柱状图需要这个单选行为,通过 add_selection 方法,绑定这个行为即可
现在其实柱状图已经可以接受点击行为。但是实际点击时,是看不到任何的效果。
这是因为我们没有告诉他,筛选后的变化反映在哪个地方。
因此,需要把行为绑定到颜色上,再次修改代码:
- 行7:alt.condition ,定义一个条件,第一参数传入 定义的行为
- 第二个参数,被点击的柱子,该柱子颜色使用正常绑定店名时的颜色
- 第三个参数,其余没有被点击的柱子,使用灰色
由于散点图与柱状图中的 encode 方法参数 color 均使用定义的条件 color ,所以当点击行为触发时,这些图表都能一同变化。
不过此时你会发现散点图的提示标签不再起作用,这是 vega lite 上的小 bug ,只需要在散点图上添加一个单选行为即可:
是不是觉得代码有点多了?我们仍然可以进一步封装。
甚至可以弄成一个 excel 的模板,只需要配置好各种设置,简单一句代码就能做出复杂的图表。这留在以后再介绍吧。
总结
altair 是一个非常有趣的可视化包,它基于 vega lite (这是一个大数据可视化工具) ,而 vega lite 底层是基于 d3.js(这是目前前端可视化的标杆)。
只要学会一定的套路,能非常简单灵活使用它做出各种复杂的图表
相关推荐
- Springboot 整合 Websocket 轻松实现IM及时通讯
-
一、方案实践集成分为三步:添加依赖、增加配置类和消息核心类、前端集成。1.1、添加依赖<dependency><groupId>org.springframework...
- SpringBoot扩展——应用Web Socket!
-
应用WebSocket目前,网络上的即时通信App有很多,如QQ、微信和飞书等,按照以往的技术来说,即时功能通常会采用服务器轮询和Comet技术来解决。HTTP是非持久化、单向的网络协议,在建立连接...
- 【Spring Boot】WebSocket 的 6 种集成方式
-
介绍由于前段时间我实现了一个库【SpringCloud】一个配置注解实现WebSocket集群方案以至于我对WebSocket的各种集成方式做了一些研究目前我所了解到的就是下面这些了(就一个破w...
- SpringBoot生产级WebSocket集群实践,支持10万连接!
-
1、问题背景智慧门诊系统旨在从一定程度上解决患者面临的三长一短(挂号、看病、取药时间长,医生问诊时间短)的问题。实现“诊前、诊中、诊后”实时智能一体化,整合完善医院工作流程。围绕门诊看病的各个环节,让...
- Spring Boot3 中 WebSocket 实现数据实时通信全解析
-
各位互联网大厂的开发同仁们,在如今的互联网应用开发中,实时通信功能越来越重要。比如在线聊天、数据推送、实时通知等场景,都离不开高效的实时通信技术。而WebSocket作为一种高效的双向通信协议,在...
- Java WebSocket 示例(java nio websocket)
-
一、环境准备1.依赖配置(Maven)在pom.xml中添加WebSocket依赖:xml<!--SpringBootWebSocket--><dependen...
- Spring Boot整合WebSocket:开启实时通信之旅
-
SpringBoot整合WebSocket:开启实时通信之旅今天咱们来聊聊SpringBoot整合WebSocket这件大事儿。说到实时通信,你是不是第一时间想到QQ、微信这些聊天工具?没错,We...
- Spring Boot3 竟能如此轻松整合 WebSocket 技术,你还不知道?
-
在当今互联网大厂的软件开发领域,实时通信的需求愈发迫切。无论是在线聊天应用、实时数据更新,还是协同办公系统,都离不开高效的实时通信技术支持。而WebSocket作为一种能够实现浏览器与服务器之间持...
- Spring Boot集成WebSocket(springboot集成websocket)
-
一、基础配置依赖引入<dependency><groupId>org.springframework.boot</groupId><artifactId>...
- Springboot下的WebSocket开发(springboot websocket server)
-
今天遇到一个需求,需要对接第三方扫码跳转。一种方案是前端页面轮询后端服务,但是这种空轮询会虚耗资源,实时性比较差而且也不优雅。所以决定使用另一种方案,websocket。以前就知道websocket,...
- springboot websocket开发(java spring boot websocket)
-
maven依赖SpringBoot2.0对WebSocket的支持简直太棒了,直接就有包可以引入<dependency><groupId>org....
- Python界面(GUI)编程PyQt5窗体小部件
-
一、简介在Qt(和大多数用户界面)中,“小部件”是用户可以与之交互的UI组件的名称。用户界面由布置在窗口内的多个小部件组成。Qt带有大量可用的小部件,也允许您创建自己的自定义和自定义小部件。二、小部件...
- 实战PyQt5: 014-下拉列表框控件QComboBox
-
QComboBox简介QComboBox下拉列表框,是一个集按钮和下拉列表选项于一体的部件。QComboBox提供了一种向用户呈现选项列表的方式,其占用最小量的屏幕空间。QComboBox中的常用方法...
- Python小白逆袭!7天吃透PyQt6,独立开发超酷桌面应用
-
PythonGUI编程:PyQt6从入门到实战的全面指南在Python的庞大生态系统中,PyQt6作为一款强大的GUI(GraphicalUserInterface,图形用户界面)编程框架,为开...
- 如何用 PyQt6 打造一个功能完善的 SQLite 数据库管理工具
-
如何使用PyQt6和qt_material库,打造一个功能完善的SQLite数据库管理工具,轻松管理和查询SQLite数据库。一、目标数据库连接与表管理:支持连接SQLite数据库...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
-
- Springboot 整合 Websocket 轻松实现IM及时通讯
- SpringBoot扩展——应用Web Socket!
- 【Spring Boot】WebSocket 的 6 种集成方式
- SpringBoot生产级WebSocket集群实践,支持10万连接!
- Spring Boot3 中 WebSocket 实现数据实时通信全解析
- Java WebSocket 示例(java nio websocket)
- Spring Boot整合WebSocket:开启实时通信之旅
- Spring Boot3 竟能如此轻松整合 WebSocket 技术,你还不知道?
- Spring Boot集成WebSocket(springboot集成websocket)
- Springboot下的WebSocket开发(springboot websocket server)
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)