面对复杂数据,Pandas 如何助力数据清洗工作?
liuian 2025-05-14 14:49 56 浏览
在数据分析和机器学习领域,数据清洗是至关重要的前置环节。高质量的数据是得出准确分析结论和构建有效模型的基石,而原始数据往往包含缺失值、重复值、异常值以及错误的数据格式等问题。Pandas 作为 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,是数据清洗的得力工具。
一、Pandas 基础入门
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,简单直观地处理关系型、标记型数据。在使用 Pandas 进行数据清洗前,需先导入 Pandas 库,通常别名为pd:
import pandas as pd
(一)数据读取
Pandas 支持读取多种常见格式的数据,如 CSV、Excel、SQL 等。以读取 CSV 文件为例:
df = pd.read_csv('data.csv')
这里的data.csv是文件名,实际使用时需替换为真实的文件名及路径。读取后,可使用head()方法查看数据的前几行,默认前 5 行:
df.head()
(二)数据基本信息查看
查看数据的基本信息有助于了解数据的结构和特征,如列的数据类型、缺失值情况等。使用info()方法:
df.info()
使用describe()方法查看数值型列的统计信息,包括计数、均值、标准差、最小值、25% 分位数、50% 分位数、75% 分位数和最大值:
df.describe()
二、处理缺失值
缺失值是数据中常见的问题,可能影响分析结果的准确性。Pandas 提供了丰富的方法来处理缺失值。
(一)检测缺失值
使用isnull()或isna()方法检测数据中的缺失值,这两个方法功能相同,返回一个布尔类型的 DataFrame,其中缺失值对应的位置为True,非缺失值对应的位置为False。结合sum()方法可统计每列的缺失值数量:
import pandas as pd
# 创建示例数据
data = {
'A': [1, None, 3],
'B': [4, 5, None],
'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 检测缺失值并统计数量
missing_values = df.isnull().sum()
print(missing_values)
运行结果:
A 1
B 1
C 0
dtype: int64
(二)删除缺失值
通过dropna()方法删除含有缺失值的行或列。axis=0(默认值)表示删除行,axis=1表示删除列。how='any'(默认值)表示只要有一个缺失值就删除,how='all'表示全部为缺失值才删除。
# 删除含有缺失值的行
df_dropped_rows = df.dropna(axis=0, how='any')
print(df_dropped_rows)
# 删除含有缺失值的列
df_dropped_columns = df.dropna(axis=1, how='any')
print(df_dropped_columns)
删除行的运行结果:
A B C
2 3 5 9
删除列的运行结果:
C
0 7
1 8
2 9
(三)填充缺失值
使用fillna()方法填充缺失值,可以填充固定值、均值、中位数、众数等,也可以使用前向填充(ffill)或后向填充(bfill)。
# 填充固定值0
df_filled_constant = df.fillna(0)
print(df_filled_constant)
# 用均值填充数值型列的缺失值
df['A'] = df['A'].fillna(df['A'].mean())
df['B'] = df['B'].fillna(df['B'].mean())
print(df)
# 前向填充
df_ffilled = df.fillna(method='ffill')
print(df_ffilled)
# 后向填充
df_bfilled = df.fillna(method='bfill')
print(df_bfilled)
填充固定值 0 的运行结果:
A B C
0 1.0 4.0 7
1 0.0 5.0 8
2 3.0 0.0 9
用均值填充数值型列缺失值的运行结果(假设均值计算结果为:A 列均值 2.0,B 列均值 4.5):
A B C
0 1.0 4.0 7
1 2.0 5.0 8
2 3.0 4.5 9
前向填充的运行结果:
A B C
0 1.0 4.0 7
1 1.0 5.0 8
2 3.0 5.0 9
后向填充的运行结果:
A B C
0 1.0 4.0 7
1 3.0 5.0 8
2 3.0 9.0 9
三、处理重复值
重复值会占用额外的存储空间,影响数据分析的效率和准确性,需要进行处理。
(一)检测重复值
使用duplicated()方法检测数据中的重复行,返回一个布尔类型的 Series,其中重复行对应的位置为True,非重复行对应的位置为False。
import pandas as pd
# 创建示例数据
data = {
'A': [1, 2, 2, 3],
'B': [4, 5, 5, 6]
}
df = pd.DataFrame(data)
# 检测重复值
duplicate_rows = df.duplicated()
print(duplicate_rows)
运行结果:
0 False
1 False
2 True
3 False
dtype: bool
(二)删除重复值
通过drop_duplicates()方法删除重复行,默认保留首次出现的行,可通过keep='last'参数保留最后一次出现的行,还可通过subset参数指定基于某些列来判断重复。
# 删除重复行,保留首次出现的行
df_dropped_duplicates = df.drop_duplicates(keep='first')
print(df_dropped_duplicates)
# 删除重复行,保留最后一次出现的行
df_dropped_duplicates_last = df.drop_duplicates(keep='last')
print(df_dropped_duplicates_last)
# 基于'A'列判断重复并删除
df_dropped_duplicates_subset = df.drop_duplicates(subset=['A'], keep='first')
print(df\_dropped\_duplicates\_subset)
保留首次出现行的运行结果:
A B
0 1 4
1 2 5
3 3 6
保留最后一次出现行的运行结果:
A B
0 1 4
2 2 5
3 3 6
基于 'A' 列判断重复并删除的运行结果:
A B
0 1 4
1 2 5
3 3 6
四、数据类型转换
在数据分析过程中,有时需要将数据转换为合适的数据类型,以满足分析需求或避免类型错误。Pandas 提供了astype()方法用于数据类型转换。
import pandas as pd
# 创建示例数据
data = {
'A': ['1', '2', '3'],
'B': [4.5, 5.6, 6.7]
}
df = pd.DataFrame(data)
# 将'A'列从字符串类型转换为整型
df['A'] = df['A'].astype(int)
print(df)
# 将'B'列从浮点型转换为整型(会截断小数部分)
df['B'] = df['B'].astype(int)
print(df)
将 'A' 列从字符串类型转换为整型的运行结果:
A B
0 1 4.5
1 2 5.6
2 3 6.7
将 'B' 列从浮点型转换为整型的运行结果:
A B
0 1 4
1 2 5
2 3 6
五、处理异常值
异常值是指与其他数据明显不同的数据点,可能是由于数据录入错误、测量误差或其他原因导致的。异常值可能会对数据分析和模型训练产生较大影响,需要进行处理。
(一)基于统计方法识别异常值
通过计算数据的统计指标,如均值、标准差、分位数等,来识别异常值。例如,使用 3σ 原则,数据的数值分布几乎全部集中在区间 (μ - 3σ, μ + 3σ) 内,超出这个范围的数据仅占不到 0.3%,可认为超出 3σ 的部分数据为异常数据。
import pandas as pd
import numpy as np
# 创建示例数据
data = {
'A': [1, 2, 3, 4, 100]
}
df = pd.DataFrame(data)
# 计算均值和标准差
mean = df['A'].mean()
std = df['A'].std()
# 计算异常值的阈值
lower_bound = mean - 3 * std
upper_bound = mean + 3 * std
# 识别异常值
outliers = df[(df['A'] < lower_bound) | (df['A'] > upper_bound)]
print(outliers)
运行结果:
A
4 100
(二)替换异常值
识别出异常值后,可以根据具体情况进行处理,如替换为指定的值、均值、中位数等。
# 将异常值替换为均值
df['A'] = df['A'].apply(lambda x: mean if (x < lower_bound) | (x > upper_bound) else x)
print(df)
运行结果:
A
0 1.0
1 2.0
2 3.0
3 4.0
4 3.0
六、数据格式化
数据格式化是指对数据的格式进行调整和规范,使其更易于分析和处理。常见的数据格式化操作包括重命名列和索引、字符串处理等。
(一)重命名列和索引
使用rename()方法重命名列和索引,使数据集的名称更直观,提升数据操作的便捷性和准确性。
import pandas as pd
# 创建示例数据
data = {
'col1': [1, 2, 3],
'col2': [4, 5, 6]
}
df = pd.DataFrame(data)
# 重命名列
df = df.rename(columns={'col1': 'new_col1', 'col2': 'new_col2'})
print(df)
# 重命名索引
df = df.rename(index={0: 'new_index0', 1: 'new_index1', 2: 'new_index2'})
print(df)
重命名列的运行结果:
new_col1 new_col2
0 1 4
1 2 5
2 3 6
重命名索引的运行结果:
new_col1 new_col2
new_index0 1 4
new_index1 2 5
new_index2 3 6
(二)字符串处理
对于字符串类型的列,可使用str方法进行各种字符串操作,如转换为小写、大写,去除两端空格,分割字符串等。
import pandas as pd
# 创建示例数据
data = {
'name': [' John Doe ', 'Jane Smith']
}
df = pd.DataFrame(data)
# 去除字符串两端的空格
df['name'] = df['name'].str.strip()
print(df)
# 转换为小写
df['name'] = df['name'].str.lower()
print(df)
去除字符串两端空格的运行结果:
name
0 John Doe
1 Jane Smith
转换为小写的运行结果:
name
0 john doe
1 jane smith
七、总结
数据清洗是数据分析和机器学习的重要环节,Pandas 提供了丰富、强大的工具和方法来处理各种数据清洗任务。通过掌握 Pandas 的数据清洗技巧,能够有效地提高数据质量,为后续的数据分析和建模工作奠定坚实的基础。在实际应用中,需要根据数据的特点和分析需求,灵活选择合适的数据清洗方法和策略。同时,不断积累实践经验,提高数据清洗的效率和准确性。
相关推荐
- Python 中 必须掌握的 20 个核心函数——items()函数
-
items()是Python字典对象的方法,用于返回字典中所有键值对的视图对象。它提供了对字典完整内容的高效访问和操作。一、items()的基本用法1.1方法签名dict.items()返回:字典键...
- Python字典:键值对的艺术_python字典的用法
-
字典(dict)是Python的核心数据结构之一,与列表同属可变序列,但采用完全不同的存储方式:定义方式:使用花括号{}(列表使用方括号[])存储结构:以键值对(key-valuepair)...
- python字典中如何添加键值对_python怎么往字典里添加键
-
添加键值对首先定义一个空字典1>>>dic={}直接对字典中不存在的key进行赋值来添加123>>>dic['name']='zhangsan'>>...
- Spring Boot @ConfigurationProperties 详解与 Nacos 配置中心集成
-
本文将深入探讨SpringBoot中@ConfigurationProperties的详细用法,包括其语法细节、类型转换、复合类型处理、数据校验,以及与Nacos配置中心的集成方式。通过...
- Dubbo概述_dubbo工作原理和机制
-
什么是RPCRPC是RemoteProcedureCall的缩写翻译为:远程过程调用目标是为了实现两台(多台)计算机\服务器,互相调用方法\通信的解决方案RPC的概念主要定义了两部分内容序列化协...
- 再见 Feign!推荐一款微服务间调用神器,跟 SpringCloud 绝配
-
在微服务项目中,如果我们想实现服务间调用,一般会选择Feign。之前介绍过一款HTTP客户端工具Retrofit,配合SpringBoot非常好用!其实Retrofit不仅支持普通的HTTP调用,还能...
- SpringGateway 网关_spring 网关的作用
-
奈非框架简介早期(2020年前)奈非提供的微服务组件和框架受到了很多开发者的欢迎这些框架和SpringCloudAlibaba的对应关系我们要知道Nacos对应Eureka都是注册中心Dubbo...
- Sentinel 限流详解-Sentinel与OpenFeign服务熔断那些事
-
SentinelResource我们使用到过这个注解,我们需要了解的是其中两个属性:value:资源名称,必填且唯一。@SentinelResource(value="test/get...
- 超详细MPLS学习指南 手把手带你实现IP与二层网络的无缝融合
-
大家晚上好,我是小老虎,今天的文章有点长,但是都是干货,耐心看下去,不会让你失望的哦!随着ASIC技术的发展,路由查找速度已经不是阻碍网络发展的瓶颈。这使得MPLS在提高转发速度方面不再具备明显的优势...
- Cisco 尝试配置MPLS-V.P.N从开始到放弃
-
本人第一次接触这个协议,所以打算分两篇进行学习和记录,本文枯燥预警,配置命令在下一篇全为定义,其也是算我毕业设计的一个小挑战。新概念重点备注为什么选择该协议IPSecVPN都属于传统VPN传统VP...
- MFC -- 网络通信编程_mfc编程教程
-
要买东西的时候,店家常常说,你要是真心买的,还能给你便宜,你看真心就是不怎么值钱。。。----网易云热评一、创建服务端1、新建一个控制台应用程序,添加源文件server2、添加代码框架#includ...
- 35W快充?2TB存储?iPhone14爆料汇总,不要再漫天吹15了
-
iPhone14都还没发布,关于iPhone15的消息却已经漫天飞,故加紧整理了关于iPhone14目前已爆出的消息。本文将从机型、刘海、屏幕、存储、芯片、拍照、信号、机身材质、充电口、快充、配色、价...
- SpringCloud Alibaba(四) - Nacos 配置中心
-
1、环境搭建1.1依赖<!--nacos注册中心注解@EnableDiscoveryClient--><dependency><groupI...
- Nacos注册中心最全详解(图文全面总结)
-
Nacos注册中心是微服务的核心组件,也是大厂经常考察的内容,下面我就重点来详解Nacos注册中心@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集》里面。微服务注册中...
- 网络技术领域端口号备忘录,受益匪浅 !
-
你好,这里是网络技术联盟站,我是瑞哥。网络端口是计算机网络中用于区分不同应用程序和服务的标识符。每个端口号都是一个16位的数字,范围从0到65535。网络端口的主要功能是帮助网络设备(如计算机和服务器...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
-
- Python 中 必须掌握的 20 个核心函数——items()函数
- Python字典:键值对的艺术_python字典的用法
- python字典中如何添加键值对_python怎么往字典里添加键
- Spring Boot @ConfigurationProperties 详解与 Nacos 配置中心集成
- Dubbo概述_dubbo工作原理和机制
- 再见 Feign!推荐一款微服务间调用神器,跟 SpringCloud 绝配
- SpringGateway 网关_spring 网关的作用
- Sentinel 限流详解-Sentinel与OpenFeign服务熔断那些事
- 超详细MPLS学习指南 手把手带你实现IP与二层网络的无缝融合
- Cisco 尝试配置MPLS-V.P.N从开始到放弃
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)