百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

面对复杂数据,Pandas 如何助力数据清洗工作?

liuian 2025-05-14 14:49 5 浏览

在数据分析和机器学习领域,数据清洗是至关重要的前置环节。高质量的数据是得出准确分析结论和构建有效模型的基石,而原始数据往往包含缺失值、重复值、异常值以及错误的数据格式等问题。Pandas 作为 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,是数据清洗的得力工具。

一、Pandas 基础入门

Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,简单直观地处理关系型、标记型数据。在使用 Pandas 进行数据清洗前,需先导入 Pandas 库,通常别名为pd

import pandas as pd

(一)数据读取

Pandas 支持读取多种常见格式的数据,如 CSV、Excel、SQL 等。以读取 CSV 文件为例:

df = pd.read_csv('data.csv')

这里的data.csv是文件名,实际使用时需替换为真实的文件名及路径。读取后,可使用head()方法查看数据的前几行,默认前 5 行:

df.head()

(二)数据基本信息查看

查看数据的基本信息有助于了解数据的结构和特征,如列的数据类型、缺失值情况等。使用info()方法:

df.info()

使用describe()方法查看数值型列的统计信息,包括计数、均值、标准差、最小值、25% 分位数、50% 分位数、75% 分位数和最大值:

df.describe()

二、处理缺失值

缺失值是数据中常见的问题,可能影响分析结果的准确性。Pandas 提供了丰富的方法来处理缺失值。

(一)检测缺失值

使用isnull()isna()方法检测数据中的缺失值,这两个方法功能相同,返回一个布尔类型的 DataFrame,其中缺失值对应的位置为True,非缺失值对应的位置为False。结合sum()方法可统计每列的缺失值数量:

import pandas as pd
# 创建示例数据
data = {
	'A': [1, None, 3],
	'B': [4, 5, None],
	'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 检测缺失值并统计数量
missing_values = df.isnull().sum()
print(missing_values)

运行结果:

A    1
B    1
C    0
dtype: int64

(二)删除缺失值

通过dropna()方法删除含有缺失值的行或列。axis=0(默认值)表示删除行,axis=1表示删除列。how='any'(默认值)表示只要有一个缺失值就删除,how='all'表示全部为缺失值才删除。

# 删除含有缺失值的行
df_dropped_rows = df.dropna(axis=0, how='any')
print(df_dropped_rows)
# 删除含有缺失值的列
df_dropped_columns = df.dropna(axis=1, how='any')
print(df_dropped_columns)

删除行的运行结果:

	  A  B  C
2  3  5  9

删除列的运行结果:

    C
0  7
1  8
2  9

(三)填充缺失值

使用fillna()方法填充缺失值,可以填充固定值、均值、中位数、众数等,也可以使用前向填充(ffill)或后向填充(bfill)。

# 填充固定值0
df_filled_constant = df.fillna(0)
print(df_filled_constant)
# 用均值填充数值型列的缺失值
df['A'] = df['A'].fillna(df['A'].mean())
df['B'] = df['B'].fillna(df['B'].mean())
print(df)
# 前向填充
df_ffilled = df.fillna(method='ffill')
print(df_ffilled)
# 后向填充
df_bfilled = df.fillna(method='bfill')
print(df_bfilled)

填充固定值 0 的运行结果:

     A    B  C
0  1.0  4.0  7
1  0.0  5.0  8
2  3.0  0.0  9

用均值填充数值型列缺失值的运行结果(假设均值计算结果为:A 列均值 2.0,B 列均值 4.5):

     A    B    C
0  1.0  4.0  7
1  2.0  5.0  8
2  3.0  4.5  9

前向填充的运行结果:

     A    B    C
0  1.0  4.0  7
1  1.0  5.0  8
2  3.0  5.0  9

后向填充的运行结果:

     A    B    C
0  1.0  4.0  7
1  3.0  5.0  8
2  3.0  9.0  9

三、处理重复值

重复值会占用额外的存储空间,影响数据分析的效率和准确性,需要进行处理。

(一)检测重复值

使用duplicated()方法检测数据中的重复行,返回一个布尔类型的 Series,其中重复行对应的位置为True,非重复行对应的位置为False

import pandas as pd

# 创建示例数据
data = {
	'A': [1, 2, 2, 3],
	'B': [4, 5, 5, 6]
}
df = pd.DataFrame(data)
# 检测重复值
duplicate_rows = df.duplicated()
print(duplicate_rows)

运行结果:

0    False
1    False
2     True
3    False
dtype: bool

(二)删除重复值

通过drop_duplicates()方法删除重复行,默认保留首次出现的行,可通过keep='last'参数保留最后一次出现的行,还可通过subset参数指定基于某些列来判断重复。

# 删除重复行,保留首次出现的行
df_dropped_duplicates = df.drop_duplicates(keep='first')
print(df_dropped_duplicates)
# 删除重复行,保留最后一次出现的行
df_dropped_duplicates_last = df.drop_duplicates(keep='last')
print(df_dropped_duplicates_last)
# 基于'A'列判断重复并删除
df_dropped_duplicates_subset = df.drop_duplicates(subset=['A'], keep='first')
print(df\_dropped\_duplicates\_subset)

保留首次出现行的运行结果:

    A  B
0  1  4
1  2  5
3  3  6

保留最后一次出现行的运行结果:

    A  B
0  1  4
2  2  5
3  3  6

基于 'A' 列判断重复并删除的运行结果:

    A  B
0  1  4
1  2  5
3  3  6

四、数据类型转换

在数据分析过程中,有时需要将数据转换为合适的数据类型,以满足分析需求或避免类型错误。Pandas 提供了astype()方法用于数据类型转换。

import pandas as pd
# 创建示例数据
data = {
	'A': ['1', '2', '3'],
	'B': [4.5, 5.6, 6.7]
}
df = pd.DataFrame(data)
# 将'A'列从字符串类型转换为整型
df['A'] = df['A'].astype(int)
print(df)
# 将'B'列从浮点型转换为整型(会截断小数部分)
df['B'] = df['B'].astype(int)
print(df)

将 'A' 列从字符串类型转换为整型的运行结果:

    A    B
0  1  4.5
1  2  5.6
2  3  6.7

将 'B' 列从浮点型转换为整型的运行结果:

    A  B
0  1  4
1  2  5
2  3  6

五、处理异常值

异常值是指与其他数据明显不同的数据点,可能是由于数据录入错误、测量误差或其他原因导致的。异常值可能会对数据分析和模型训练产生较大影响,需要进行处理。

(一)基于统计方法识别异常值

通过计算数据的统计指标,如均值、标准差、分位数等,来识别异常值。例如,使用 3σ 原则,数据的数值分布几乎全部集中在区间 (μ - 3σ, μ + 3σ) 内,超出这个范围的数据仅占不到 0.3%,可认为超出 3σ 的部分数据为异常数据。

import pandas as pd
import numpy as np

# 创建示例数据
data = {
	'A': [1, 2, 3, 4, 100]
}
df = pd.DataFrame(data)
# 计算均值和标准差
mean = df['A'].mean()
std = df['A'].std()
# 计算异常值的阈值
lower_bound = mean - 3 * std
upper_bound = mean + 3 * std
# 识别异常值
outliers = df[(df['A'] < lower_bound) | (df['A'] > upper_bound)]
print(outliers)

运行结果:

			A
4  100

(二)替换异常值

识别出异常值后,可以根据具体情况进行处理,如替换为指定的值、均值、中位数等。

# 将异常值替换为均值
df['A'] = df['A'].apply(lambda x: mean if (x < lower_bound) | (x > upper_bound) else x)
print(df)

运行结果:

     A
0  1.0
1  2.0
2  3.0
3  4.0
4  3.0

六、数据格式化

数据格式化是指对数据的格式进行调整和规范,使其更易于分析和处理。常见的数据格式化操作包括重命名列和索引、字符串处理等。

(一)重命名列和索引

使用rename()方法重命名列和索引,使数据集的名称更直观,提升数据操作的便捷性和准确性。

import pandas as pd
# 创建示例数据
data = {
	'col1': [1, 2, 3],
	'col2': [4, 5, 6]
}

df = pd.DataFrame(data)
# 重命名列
df = df.rename(columns={'col1': 'new_col1', 'col2': 'new_col2'})
print(df)

# 重命名索引
df = df.rename(index={0: 'new_index0', 1: 'new_index1', 2: 'new_index2'})
print(df)

重命名列的运行结果:

    new_col1  new_col2
0         1         4
1         2         5
2         3         6

重命名索引的运行结果:

	                  new_col1  new_col2
new_index0         1         4
new_index1         2         5
new_index2         3         6

(二)字符串处理

对于字符串类型的列,可使用str方法进行各种字符串操作,如转换为小写、大写,去除两端空格,分割字符串等。

import pandas as pd
# 创建示例数据
data = {
	'name': ['  John Doe  ', 'Jane Smith']
}

df = pd.DataFrame(data)
# 去除字符串两端的空格
df['name'] = df['name'].str.strip()
print(df)

# 转换为小写
df['name'] = df['name'].str.lower()
print(df)

去除字符串两端空格的运行结果:

        name
0    John Doe
1  Jane Smith

转换为小写的运行结果:

       name
0    john doe
1  jane smith

七、总结

数据清洗是数据分析和机器学习的重要环节,Pandas 提供了丰富、强大的工具和方法来处理各种数据清洗任务。通过掌握 Pandas 的数据清洗技巧,能够有效地提高数据质量,为后续的数据分析和建模工作奠定坚实的基础。在实际应用中,需要根据数据的特点和分析需求,灵活选择合适的数据清洗方法和策略。同时,不断积累实践经验,提高数据清洗的效率和准确性。

相关推荐

【常识】如何优化Windows 7

优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...

系统优化!Windows 11/10 必做的十个优化配置

以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...

最好用音频剪辑的软件,使用方法?

QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...

Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑

前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...

Motion for Vue:为Vue量身定制的强大动画库

在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...

CSS view():JavaScript 滚动动画的终结

前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...

「大数据」 hive入门

前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...

青铜时代的终结:对奖牌架构的反思

作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...

解析IBM SQL-on-Hadoop的优化思路

对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...

交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较

图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...

深入解析全新 AWS S3 Tables:重塑数据湖仓架构

在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...

Apache DataFusion查询引擎简介

简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...

大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)

一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...

比较前 3 名Schema管理工具

关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...

大数据技术之Flume

第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...