百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

面对复杂数据,Pandas 如何助力数据清洗工作?

liuian 2025-05-14 14:49 31 浏览

在数据分析和机器学习领域,数据清洗是至关重要的前置环节。高质量的数据是得出准确分析结论和构建有效模型的基石,而原始数据往往包含缺失值、重复值、异常值以及错误的数据格式等问题。Pandas 作为 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,是数据清洗的得力工具。

一、Pandas 基础入门

Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,简单直观地处理关系型、标记型数据。在使用 Pandas 进行数据清洗前,需先导入 Pandas 库,通常别名为pd

import pandas as pd

(一)数据读取

Pandas 支持读取多种常见格式的数据,如 CSV、Excel、SQL 等。以读取 CSV 文件为例:

df = pd.read_csv('data.csv')

这里的data.csv是文件名,实际使用时需替换为真实的文件名及路径。读取后,可使用head()方法查看数据的前几行,默认前 5 行:

df.head()

(二)数据基本信息查看

查看数据的基本信息有助于了解数据的结构和特征,如列的数据类型、缺失值情况等。使用info()方法:

df.info()

使用describe()方法查看数值型列的统计信息,包括计数、均值、标准差、最小值、25% 分位数、50% 分位数、75% 分位数和最大值:

df.describe()

二、处理缺失值

缺失值是数据中常见的问题,可能影响分析结果的准确性。Pandas 提供了丰富的方法来处理缺失值。

(一)检测缺失值

使用isnull()isna()方法检测数据中的缺失值,这两个方法功能相同,返回一个布尔类型的 DataFrame,其中缺失值对应的位置为True,非缺失值对应的位置为False。结合sum()方法可统计每列的缺失值数量:

import pandas as pd
# 创建示例数据
data = {
	'A': [1, None, 3],
	'B': [4, 5, None],
	'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 检测缺失值并统计数量
missing_values = df.isnull().sum()
print(missing_values)

运行结果:

A    1
B    1
C    0
dtype: int64

(二)删除缺失值

通过dropna()方法删除含有缺失值的行或列。axis=0(默认值)表示删除行,axis=1表示删除列。how='any'(默认值)表示只要有一个缺失值就删除,how='all'表示全部为缺失值才删除。

# 删除含有缺失值的行
df_dropped_rows = df.dropna(axis=0, how='any')
print(df_dropped_rows)
# 删除含有缺失值的列
df_dropped_columns = df.dropna(axis=1, how='any')
print(df_dropped_columns)

删除行的运行结果:

	  A  B  C
2  3  5  9

删除列的运行结果:

    C
0  7
1  8
2  9

(三)填充缺失值

使用fillna()方法填充缺失值,可以填充固定值、均值、中位数、众数等,也可以使用前向填充(ffill)或后向填充(bfill)。

# 填充固定值0
df_filled_constant = df.fillna(0)
print(df_filled_constant)
# 用均值填充数值型列的缺失值
df['A'] = df['A'].fillna(df['A'].mean())
df['B'] = df['B'].fillna(df['B'].mean())
print(df)
# 前向填充
df_ffilled = df.fillna(method='ffill')
print(df_ffilled)
# 后向填充
df_bfilled = df.fillna(method='bfill')
print(df_bfilled)

填充固定值 0 的运行结果:

     A    B  C
0  1.0  4.0  7
1  0.0  5.0  8
2  3.0  0.0  9

用均值填充数值型列缺失值的运行结果(假设均值计算结果为:A 列均值 2.0,B 列均值 4.5):

     A    B    C
0  1.0  4.0  7
1  2.0  5.0  8
2  3.0  4.5  9

前向填充的运行结果:

     A    B    C
0  1.0  4.0  7
1  1.0  5.0  8
2  3.0  5.0  9

后向填充的运行结果:

     A    B    C
0  1.0  4.0  7
1  3.0  5.0  8
2  3.0  9.0  9

三、处理重复值

重复值会占用额外的存储空间,影响数据分析的效率和准确性,需要进行处理。

(一)检测重复值

使用duplicated()方法检测数据中的重复行,返回一个布尔类型的 Series,其中重复行对应的位置为True,非重复行对应的位置为False

import pandas as pd

# 创建示例数据
data = {
	'A': [1, 2, 2, 3],
	'B': [4, 5, 5, 6]
}
df = pd.DataFrame(data)
# 检测重复值
duplicate_rows = df.duplicated()
print(duplicate_rows)

运行结果:

0    False
1    False
2     True
3    False
dtype: bool

(二)删除重复值

通过drop_duplicates()方法删除重复行,默认保留首次出现的行,可通过keep='last'参数保留最后一次出现的行,还可通过subset参数指定基于某些列来判断重复。

# 删除重复行,保留首次出现的行
df_dropped_duplicates = df.drop_duplicates(keep='first')
print(df_dropped_duplicates)
# 删除重复行,保留最后一次出现的行
df_dropped_duplicates_last = df.drop_duplicates(keep='last')
print(df_dropped_duplicates_last)
# 基于'A'列判断重复并删除
df_dropped_duplicates_subset = df.drop_duplicates(subset=['A'], keep='first')
print(df\_dropped\_duplicates\_subset)

保留首次出现行的运行结果:

    A  B
0  1  4
1  2  5
3  3  6

保留最后一次出现行的运行结果:

    A  B
0  1  4
2  2  5
3  3  6

基于 'A' 列判断重复并删除的运行结果:

    A  B
0  1  4
1  2  5
3  3  6

四、数据类型转换

在数据分析过程中,有时需要将数据转换为合适的数据类型,以满足分析需求或避免类型错误。Pandas 提供了astype()方法用于数据类型转换。

import pandas as pd
# 创建示例数据
data = {
	'A': ['1', '2', '3'],
	'B': [4.5, 5.6, 6.7]
}
df = pd.DataFrame(data)
# 将'A'列从字符串类型转换为整型
df['A'] = df['A'].astype(int)
print(df)
# 将'B'列从浮点型转换为整型(会截断小数部分)
df['B'] = df['B'].astype(int)
print(df)

将 'A' 列从字符串类型转换为整型的运行结果:

    A    B
0  1  4.5
1  2  5.6
2  3  6.7

将 'B' 列从浮点型转换为整型的运行结果:

    A  B
0  1  4
1  2  5
2  3  6

五、处理异常值

异常值是指与其他数据明显不同的数据点,可能是由于数据录入错误、测量误差或其他原因导致的。异常值可能会对数据分析和模型训练产生较大影响,需要进行处理。

(一)基于统计方法识别异常值

通过计算数据的统计指标,如均值、标准差、分位数等,来识别异常值。例如,使用 3σ 原则,数据的数值分布几乎全部集中在区间 (μ - 3σ, μ + 3σ) 内,超出这个范围的数据仅占不到 0.3%,可认为超出 3σ 的部分数据为异常数据。

import pandas as pd
import numpy as np

# 创建示例数据
data = {
	'A': [1, 2, 3, 4, 100]
}
df = pd.DataFrame(data)
# 计算均值和标准差
mean = df['A'].mean()
std = df['A'].std()
# 计算异常值的阈值
lower_bound = mean - 3 * std
upper_bound = mean + 3 * std
# 识别异常值
outliers = df[(df['A'] < lower_bound) | (df['A'] > upper_bound)]
print(outliers)

运行结果:

			A
4  100

(二)替换异常值

识别出异常值后,可以根据具体情况进行处理,如替换为指定的值、均值、中位数等。

# 将异常值替换为均值
df['A'] = df['A'].apply(lambda x: mean if (x < lower_bound) | (x > upper_bound) else x)
print(df)

运行结果:

     A
0  1.0
1  2.0
2  3.0
3  4.0
4  3.0

六、数据格式化

数据格式化是指对数据的格式进行调整和规范,使其更易于分析和处理。常见的数据格式化操作包括重命名列和索引、字符串处理等。

(一)重命名列和索引

使用rename()方法重命名列和索引,使数据集的名称更直观,提升数据操作的便捷性和准确性。

import pandas as pd
# 创建示例数据
data = {
	'col1': [1, 2, 3],
	'col2': [4, 5, 6]
}

df = pd.DataFrame(data)
# 重命名列
df = df.rename(columns={'col1': 'new_col1', 'col2': 'new_col2'})
print(df)

# 重命名索引
df = df.rename(index={0: 'new_index0', 1: 'new_index1', 2: 'new_index2'})
print(df)

重命名列的运行结果:

    new_col1  new_col2
0         1         4
1         2         5
2         3         6

重命名索引的运行结果:

	                  new_col1  new_col2
new_index0         1         4
new_index1         2         5
new_index2         3         6

(二)字符串处理

对于字符串类型的列,可使用str方法进行各种字符串操作,如转换为小写、大写,去除两端空格,分割字符串等。

import pandas as pd
# 创建示例数据
data = {
	'name': ['  John Doe  ', 'Jane Smith']
}

df = pd.DataFrame(data)
# 去除字符串两端的空格
df['name'] = df['name'].str.strip()
print(df)

# 转换为小写
df['name'] = df['name'].str.lower()
print(df)

去除字符串两端空格的运行结果:

        name
0    John Doe
1  Jane Smith

转换为小写的运行结果:

       name
0    john doe
1  jane smith

七、总结

数据清洗是数据分析和机器学习的重要环节,Pandas 提供了丰富、强大的工具和方法来处理各种数据清洗任务。通过掌握 Pandas 的数据清洗技巧,能够有效地提高数据质量,为后续的数据分析和建模工作奠定坚实的基础。在实际应用中,需要根据数据的特点和分析需求,灵活选择合适的数据清洗方法和策略。同时,不断积累实践经验,提高数据清洗的效率和准确性。

相关推荐

Springboot 整合 Websocket 轻松实现IM及时通讯

一、方案实践集成分为三步:添加依赖、增加配置类和消息核心类、前端集成。1.1、添加依赖<dependency><groupId>org.springframework...

SpringBoot扩展——应用Web Socket!

应用WebSocket目前,网络上的即时通信App有很多,如QQ、微信和飞书等,按照以往的技术来说,即时功能通常会采用服务器轮询和Comet技术来解决。HTTP是非持久化、单向的网络协议,在建立连接...

【Spring Boot】WebSocket 的 6 种集成方式

介绍由于前段时间我实现了一个库【SpringCloud】一个配置注解实现WebSocket集群方案以至于我对WebSocket的各种集成方式做了一些研究目前我所了解到的就是下面这些了(就一个破w...

SpringBoot生产级WebSocket集群实践,支持10万连接!

1、问题背景智慧门诊系统旨在从一定程度上解决患者面临的三长一短(挂号、看病、取药时间长,医生问诊时间短)的问题。实现“诊前、诊中、诊后”实时智能一体化,整合完善医院工作流程。围绕门诊看病的各个环节,让...

Spring Boot3 中 WebSocket 实现数据实时通信全解析

各位互联网大厂的开发同仁们,在如今的互联网应用开发中,实时通信功能越来越重要。比如在线聊天、数据推送、实时通知等场景,都离不开高效的实时通信技术。而WebSocket作为一种高效的双向通信协议,在...

Java WebSocket 示例(java nio websocket)

一、环境准备1.依赖配置(Maven)在pom.xml中添加WebSocket依赖:xml<!--SpringBootWebSocket--><dependen...

Spring Boot整合WebSocket:开启实时通信之旅

SpringBoot整合WebSocket:开启实时通信之旅今天咱们来聊聊SpringBoot整合WebSocket这件大事儿。说到实时通信,你是不是第一时间想到QQ、微信这些聊天工具?没错,We...

Spring Boot3 竟能如此轻松整合 WebSocket 技术,你还不知道?

在当今互联网大厂的软件开发领域,实时通信的需求愈发迫切。无论是在线聊天应用、实时数据更新,还是协同办公系统,都离不开高效的实时通信技术支持。而WebSocket作为一种能够实现浏览器与服务器之间持...

Spring Boot集成WebSocket(springboot集成websocket)

一、基础配置依赖引入<dependency><groupId>org.springframework.boot</groupId><artifactId>...

Springboot下的WebSocket开发(springboot websocket server)

今天遇到一个需求,需要对接第三方扫码跳转。一种方案是前端页面轮询后端服务,但是这种空轮询会虚耗资源,实时性比较差而且也不优雅。所以决定使用另一种方案,websocket。以前就知道websocket,...

springboot websocket开发(java spring boot websocket)

maven依赖SpringBoot2.0对WebSocket的支持简直太棒了,直接就有包可以引入<dependency><groupId>org....

Python界面(GUI)编程PyQt5窗体小部件

一、简介在Qt(和大多数用户界面)中,“小部件”是用户可以与之交互的UI组件的名称。用户界面由布置在窗口内的多个小部件组成。Qt带有大量可用的小部件,也允许您创建自己的自定义和自定义小部件。二、小部件...

实战PyQt5: 014-下拉列表框控件QComboBox

QComboBox简介QComboBox下拉列表框,是一个集按钮和下拉列表选项于一体的部件。QComboBox提供了一种向用户呈现选项列表的方式,其占用最小量的屏幕空间。QComboBox中的常用方法...

Python小白逆袭!7天吃透PyQt6,独立开发超酷桌面应用

PythonGUI编程:PyQt6从入门到实战的全面指南在Python的庞大生态系统中,PyQt6作为一款强大的GUI(GraphicalUserInterface,图形用户界面)编程框架,为开...

如何用 PyQt6 打造一个功能完善的 SQLite 数据库管理工具

如何使用PyQt6和qt_material库,打造一个功能完善的SQLite数据库管理工具,轻松管理和查询SQLite数据库。一、目标数据库连接与表管理:支持连接SQLite数据库...