百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

时序异常检测工具:ADTK(时序测试)

liuian 2025-04-09 17:53 39 浏览

1 adtk简介

智能运维AIOps的数据基本上都是时间序列形式的,而异常检测告警是AIOps中重要组成部分。笔者最近在处理时间序列数据时有使用到adtk这个python库,在这里和大家做下分享。

什么是adtk?

adtk(Anomaly Detection Toolkit)是无监督异常检测的python工具包,它提供常用算法和处理函数:

  • 简单有效的异常检测算法(detector**)**
  • 异常特征加工(transformers)
  • 处理流程控制(Pipe)

2 安装

pip install adtk

3. adtk数据要求

时间序列的数据主要包括时间和相应的指标(如cpu,内存,数量等)。python中数据分析一般都是pandas的DataFrame,adtk要求输入数据的索引必须DatetimeIndex

pandas提供了时间序列的时间生成和处理方法。

pd.date_range

stamps = pd.date_range("2012-10-08 18:15:05", periods=4, freq="D")
# DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
#           '2012-10-10 18:15:05', '2012-10-11 18:15:05'],
#          dtype='datetime64[ns]', freq='D')

pd.Timestamp

tmp = pd.Timestamp("2018-01-05") + pd.Timedelta("1 day")
print(tmp, tmp.timestamp(), tmp.strftime('%Y-%m-%d'))
# 2018-01-06 00:00:00 1515196800.0 2018-01-06
pd.Timestamp( tmp.timestamp(), unit='s', tz='Asia/Shanghai')
# Timestamp('2018-01-06 08:00:00+0800', tz='Asia/Shanghai')

pd.to_datetime

adtk提供是validate_series来验证时间序列数据的有效性,如是否按时间顺序

import pandas as pd
from adtk.data import validate_series
from adtk.visualization import plot
df = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
df = validate_series(df)
plot(df)

4. 异常特征加工(transformers)

adtk中transformers提供了许多时间序列特征加工的方法:

  • 一般我们获取时间序列的特征,通常会按照时间窗口在滑动,采集时间窗口上的统计特征
  • 还有对于季节性趋势做分解,区分哪些是季节性的部分,哪些是趋势的部分
  • 时间序列降维映射:对于细粒度的时间序列数据,数据量大,对于检测算法来说效率不高。降维方法**能保留时间序列的主要趋势等特征同时,降低维数,提供时间效率。这个对于用CNN的方式来进行时间序列分类特别有效,adtk主要提供基于pca的降维和重构方法,主要应用于多维时间序列。

4.1 滑动窗口

atdk提供单个宽口RollingAggregate和2个窗口DoubleRollingAggregate的滑动方式。统计特征支持均值,中位数,汇总,最大值,最小值,分位数, 方差,标准差,偏度,峰度,直方图 等,['mean', 'median', 'sum', 'min', 'max', 'quantile', 'iqr', 'idr', 'count', 'nnz', 'nunique', 'std', 'var', 'skew', 'kurt', 'hist']其中

  • 'iqr': 是分位数 75% 和 25%差值
  • 'idr': 是分位数 90% 和 10%插值
  • RollingAggregate
import pandas as pd
from adtk.data import validate_series
from adtk.transformer import RollingAggregate
from adtk.transformer import DoubleRollingAggregate
s = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)

s_transformed = RollingAggregate(agg='quantile',agg_params={"q": [0.25, 0.75]}, window=5).transform(s)
  • DoubleRollingAggregate 提供了两个窗口之间统计特征的差异特征,如前5分钟和后5分钟,均值的差值等。agg参数和RollingAggregate中一致,新增的参数diff主要衡量差距的函数:
import pandas as pd
from adtk.data import validate_series
from adtk.transformer import DoubleRollingAggregate
s = pd.read_csv('./data/ec2_cpu_utilization_53ea38.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)

s_transformed = DoubleRollingAggregate(
    agg="median",
    window=5,
    diff="diff").transform(s)

参数:

  • 'diff': 后减去前
  • 'rel_diff': Relative difference between values of aggregated metric (right minus left divided left). Only applicable if the aggregated metric is scalar.
  • 'abs_rel_diff': (后-前)/前, 相对差值
  • 'l1': l1正则
  • 'l2': l2正则

4.2 季节性拆解

时间序列可拆解成趋势性,季节性和残差部分。atdk中ClassicSeasonalDecomposition提供了这三个部分拆解,并移除趋势和季节性部分,返回残差部分。

  • freq: 设置季节性的周期
  • trend:可以设置是否保留趋势性
from adtk.transformer import ClassicSeasonalDecomposition
 
s = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)
 
s_transformed = ClassicSeasonalDecomposition().fit_transform(s)
s_transformed = ClassicSeasonal
Decomposition(trend=True).fit_transform(s)

4.3 降维和重构

adtk提供的pca对数据进行降维到主成分PcaProjection和重构方法PcaReconstruction

df = pd.read_csv('./data/generator.csv', index_col="Time", parse_dates=True)
df = validate_series(df)

from adtk.transformer import PcaProjection
s = PcaProjection(k=1).fit_transform(df)
plot(pd.concat([df, s], axis=1), ts_linewidth=1, ts_markersize=3, curve_group=[("Speed (kRPM)", "Power (kW)"), "pc0"]);
from adtk.transformer import PcaReconstruction
df_transformed = PcaReconstruction(k=1).fit_transform(df).rename(columns={
                "Speed (kRPM)": "Speed reconstruction (kRPM)",
                "Power (kW)": "Power reconstruction (kW)"})
plot(pd.concat([df, df_transformed], axis=1), ts_linewidth=1, ts_markersize=3,
     curve_group=[("Speed (kRPM)", "Power (kW)"),
                  ("Speed reconstruction (kRPM)", 
                   "Power reconstruction (kW)")]);

5. 异常检测算法(detector)

adtk提供的主要是无监督或者基于规则的时间序列检测算法,可以用于常规的异常检测。

检测离群点离群点是和普通数据差异极大的数据点。adtk主要提供了包括 adtk.detector.ThresholdAD adtk.detector.QuantileAD adtk.detector.InterQuartileRangeAD adtk.detector.GeneralizedESDTestAD的检测算法。

ThresholdAD

"""
adtk.detector.ThresholdAD(low=None, high=None)
参数:
low:下限,小于此值,视为异常
high:上限,大于此值,视为异常
原理:通过认为设定上下限来识别异常
总结:固定阈值算法
"""

from adtk.detector import ThresholdAD
threshold_ad = ThresholdAD(high=30, low=15)
anomalies = threshold_ad.detect(s)

QuantileAD

adtk.detector.QuantileAD(low=None, high=None)
参数:
low:分位下限,范围(0,1),当low=0.25时,表示Q1
high:分位上限,范围(0,1),当low=0.25时,表示Q3
原理:通过历史数据计算出给定low与high对应的分位值Q_low,Q_high,小于Q_low或大于Q_high,视为异常
总结:分位阈值算法

from adtk.detector import QuantileAD
quantile_ad = QuantileAD(high=0.99, low=0.01)
anomalies = quantile_ad.fit_detect(s)

InterQuartileRangeAD

adtk.detector.InterQuartileRangeAD(c=3.0)

参数:c:分位距的系数,用来确定上下限,可为float,也可为(float,float)

原理:当c为float时,通过历史数据计算出 Q3+c*IQR 作为上限值,大于上限值视为异常,当c=(float1,float2)时,通过历史数据计算出 (Q1-c1*IQR, Q3+c2*IQR) 作为正常范围,不在正常范围视为异常

总结:箱线图算法

from adtk.detector import InterQuartileRangeAD
iqr_ad = InterQuartileRangeAD(c=1.5)
anomalies = iqr_ad.fit_detect(s)

GeneralizedESDTestAD

adtk.detector.GeneralizedESDTestAD(alpha=0.05)

参数:

  • alpha:显著性水平 (Significance level),alpha越小,表示识别出的异常约有把握是真异常。
  • 原理:将样本点的值与样本的均值作差后除以样本标准差,取最大值,通过t分布计算阈值,对比阈值确定异常点。

计算步骤简述:

  • 设置显著水平alpha,通常取0.05
  • 指定离群比例h,若h=5%,则表示50各样本中存在离群点数为2
  • 计算数据集的均值mu与标准差sigma,将所有样本与均值作差,取绝对值,再除以标准差,找出最大值,得到esd_1
  • 在剩下的样本点中,重复步骤3,可以得到h个esd值
  • 为每个esd值计算critical value: lambda_i (采用t分布计算)
  • 统计每个esd是否大于lambda_i,大于的认为你是异常
from adtk.detector import GeneralizedESDTestAD
esd_ad = GeneralizedESDTestAD(alpha=0.3)
anomalies = esd_ad.fit_detect(s)

突变:

Spike and Level Shift 异常的表现形式不是离群点,而是通过和邻近点的比较,即突增或者突降。adtk提供adtk.detector.PersistADadtk.detector.LevelShiftAD检测方法

PersistAD

adtk.detector.PersistAD(window=1, c=3.0, side='both', min_periods=None, agg='median')

参数:

  • window:参考窗长度,可为int, str
  • c:分位距倍数,用于确定上下限范围
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • min_periods:参考窗中最小个数,小于此个数将会报异常,默认为None,表示每个时间点都得有值
  • agg:参考窗中的统计量计算方式,因为当前值是与参考窗中产生的统计量作比较,所以得将参考窗中的数据计算成统计量,默
  • 认'median',表示去参考窗的中位值

原理:

  • 用滑动窗口遍历历史数据,将窗口后的一位数据与参考窗中的统计量做差,得到一个新的时间序列s1;
  • 计算s1的(Q1-cIQR, Q3+cIQR) 作为正常范围;
  • 若当前值与它参考窗中的统计量之差,不在2中的正常范围内,视为异常。

调参:

  • window:越大,模型越不敏感,不容易被突刺干扰
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小
  • min_periods:对缺失值的容忍程度,越大,越不允许有太多的缺失值
  • agg:统计量的聚合方式,跟统计量的特性有关,如 'median'不容易受极端值影响
  • 总结:先计算一条新的时间序列,再用箱线图作异常检测
  from adtk.detector import PersistAD
  persist_ad = PersistAD(c=3.0, side='positive')
  anomalies = persist_ad.fit_detect(s)

LevelShiftAD

adtk.detector.LevelShiftAD(window, c=6.0, side='both', min_periods=None)

参数:

  • window:支持(10,5),表示使用两个相邻的滑动窗,左侧的窗中的中位值表示参考值,右侧窗中的中位值表示当前值
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小,默认6.0
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • min_periods:参考窗中最小个数,小于此个数将会报异常,默认为None,表示每个时间点都得有值

原理:

该模型用于检测突变情况,相比于PersistAD,其抗抖动能力较强,不容易出现误报。

from adtk.detector import LevelShiftAD
level_shift_ad = LevelShiftAD(c=6.0, side='both', window=5)
anomalies = level_shift_ad.fit_detect(s)

季节性

adtk.detector.SeasonalAD

adtk.detector.SeasonalAD(freq=None, side='both', c=3.0, trend=False)

SeasonalAD主要是根据ClassicSeasonalDecomposition来处理,判断。

参数:

  • freq:季节性周期
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小,默认6.0
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • trend:是否考虑趋势
from adtk.detector import SeasonalAD
seasonal_ad = SeasonalAD(c=3.0, side="both")
anomalies = seasonal_ad.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_color='red', 
     anomaly_tag="marker", anomaly_markersize=2);

pipe 组合算法

from adtk.pipe import Pipeline
steps = [
    ("deseasonal", ClassicSeasonalDecomposition()),
    ("quantile_ad", QuantileAD(high=0.995, low=0.005))
]
pipeline = Pipeline(steps)
anomalies = pipeline.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_markersize=2, 
     anomaly_tag="marker", anomaly_color='red');

6. 总结

本文介绍了时间序列异常检测的无监督算法工具包ADTK。ADTK提供了简单的异常检测算法和时间序列特征加工函数,希望对你有帮助。总结如下:

  • adtk要求输入数据为datetimeIndexvalidate_series来验证数据有效性,使得时间有序
  • adtk单窗口和double窗口滑动,加工统计特征
  • adtk分解时间序列的季节部分,获得时间序列的残差部分,可根据这个判断异常点
  • adtk支持离群点、突变和季节性异常检测。通过fit_detect 获取异常点序列,也可以通过Pipeline联通多部异常检测算法

相关推荐

电脑不能正常关机(电脑强制关机后无法正常启动)

1解决电脑无法关机的方法2电脑无法关机可能是由于软件冲突、系统故障或者硬件问题等原因造成的。可以尝试以下几种解决方法:a)强制关机:按住电脑主机上的电源按钮直到电脑完全关闭,但这种方法可能会...

qq对战平台下载官网(qq对战平台安卓版)

1.在左边游戏分类上选择你想要玩的游戏,双击游戏名称(cs,魔兽,星际);2.右边房间列表出现不同游戏版本的房间,请对应你安装的游戏的版本选择房间,双击进入;3.点击“设置”按钮,弹出QQ对战平台...

分区助手专业版下载(分区助手6.0中文版)

区别主要有以下几点:1.功能差异:傲梅分区助手绿色版相对于专业版功能较少,仅提供基本的分区操作,如创建、删除、合并、移动、调整分区大小等,而专业版则提供更多的高级功能,如转换磁盘类型、拷贝分区、修复...

驱动程序在哪里找(驱动程序在哪里找出来)

驱动程序在电脑中可以这样查找:1.打开设备管理器:在Windows系统中,你可以通过“控制面板”>“设备管理器”来打开设备管理器。2.查找驱动程序:在设备管理器中,你可以看到你的电脑中安装的...

用光盘怎么重装系统(用光盘怎么重装系统win7)

惠普笔记本有系统光盘重装系统的具体步骤如下:1、当我们用光盘来进行系统重装的时候,我们需要准备好微软系统的系统盘。2、首先我们打开电脑机箱上的光驱,直接放入光碟,此时电脑会自动重启进入读取系统光盘操作...

质量管理体系有哪些(永辉质量管理体系有哪些)

   常见4种。见下:  质量管理体系常用的包括ISO9000质量管理体系、精益生产管理体系、六西格玛质量管理体系、资质体系等。ISO9000...

联想电脑如何截屏截图(联想电脑上怎样截图)

用lenovo电脑如果想截屏,我们可以采用了以下几个方法。一个方法就是用笔记本电脑截屏的快捷键来进行截屏。我们在浏览网页的时候,如果想把网页截屏下来,可以用笔记本电脑的Prtsc键。这个键就是截屏的...

软件升级后怎么恢复以前的版本

不能恢复了,出现新版本后低版本验证就会关闭。1、软件升级软件升级,是指软件开发者在编写软件的时候,由于设计人员考虑不全面或程序功能不完善,在软件发行后,通过对程序的修改或加入新的功能后,以补丁的形式发...

好看的鼠标指针图片(漂亮鼠标指针下载)

鼠标指针是计算机用户界面中常见的元素之一,其基本形状主要有以下几种:1.默认指针:通常是一个箭头的形状,这是最常见的鼠标指针。当系统处于就绪、等待状态,或者用户没有进行任何操作时,鼠标指针会显示为这...

128键盘键位图高清图(128键机械键盘键位图)

“Fn”键通常是功能键的简称。在惠普128fn键盘上,按下“Fn”键可以启用键盘上的其他功能按键。这些功能按键通常印有其他标志,如调节亮度、音量、飞行模式、触控板开关等。惠普128fn使用说明。首先需...

给电脑设置开机密码(电脑开关机密码设置方法)

方法如下1.建立开机密码。进入BIOS系统界面,点击键盘的Del按键,点击选项中的设置用户密码。设置完毕进入高级设置,点击密码选项列表的系统密码,点击保存并推出即可;2.设置系统密码。进入系统界...

用u盘怎么安装系统到电脑上(从u盘怎么安装系统)

首先将要安装的电脑系统下载到u盘里面。然后将u盘插入电脑,确保电脑识别成功。最后打开u盘,双击里面的系统安装包,点击安装即可。以下是重装电脑系统的一般步骤:在正常可用的电脑上下载并安装一个制作启动U盘...

百度输入法下载免费下载(百度输入法安卓版免费下载)

不同的车载导航系统的添加方法:1、车载导航为安卓系统:在电脑中下载第三方安卓输入法安装包,用u盘拷贝安装包,传入车载导航中,在导航中选择安装即可。2、车载导航为ce系统:此系统不支持额外安装输入法,只...

hp电脑如何进入bios(hp电脑如何进入u盘启动界面)

请看下文在重装电脑或是需要进行硬件设置的时候,就需要进入BIOS进行设置,那么怎么样进入电脑的BIOS呢?下面就以HP电脑来说明进入BIOS的方法吧。1.按电源键启动电脑在屏幕刚亮时不停按下F10...

flash下载电脑版下载(flash软件电脑版下载)
flash下载电脑版下载(flash软件电脑版下载)

AdobeFlashPlayer,是一种广泛使用专有的多媒体程序播放器,今天来分享一下电脑如何安装flashplayer,希望对大家有所帮助;1、首先打开电脑桌面【浏览器】,搜索【AdobeFlashPlayer】,2、点击第一个网址进入【...

2025-11-07 19:05 liuian