百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

时序异常检测工具:ADTK(时序测试)

liuian 2025-04-09 17:53 17 浏览

1 adtk简介

智能运维AIOps的数据基本上都是时间序列形式的,而异常检测告警是AIOps中重要组成部分。笔者最近在处理时间序列数据时有使用到adtk这个python库,在这里和大家做下分享。

什么是adtk?

adtk(Anomaly Detection Toolkit)是无监督异常检测的python工具包,它提供常用算法和处理函数:

  • 简单有效的异常检测算法(detector**)**
  • 异常特征加工(transformers)
  • 处理流程控制(Pipe)

2 安装

pip install adtk

3. adtk数据要求

时间序列的数据主要包括时间和相应的指标(如cpu,内存,数量等)。python中数据分析一般都是pandas的DataFrame,adtk要求输入数据的索引必须DatetimeIndex

pandas提供了时间序列的时间生成和处理方法。

pd.date_range

stamps = pd.date_range("2012-10-08 18:15:05", periods=4, freq="D")
# DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
#           '2012-10-10 18:15:05', '2012-10-11 18:15:05'],
#          dtype='datetime64[ns]', freq='D')

pd.Timestamp

tmp = pd.Timestamp("2018-01-05") + pd.Timedelta("1 day")
print(tmp, tmp.timestamp(), tmp.strftime('%Y-%m-%d'))
# 2018-01-06 00:00:00 1515196800.0 2018-01-06
pd.Timestamp( tmp.timestamp(), unit='s', tz='Asia/Shanghai')
# Timestamp('2018-01-06 08:00:00+0800', tz='Asia/Shanghai')

pd.to_datetime

adtk提供是validate_series来验证时间序列数据的有效性,如是否按时间顺序

import pandas as pd
from adtk.data import validate_series
from adtk.visualization import plot
df = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
df = validate_series(df)
plot(df)

4. 异常特征加工(transformers)

adtk中transformers提供了许多时间序列特征加工的方法:

  • 一般我们获取时间序列的特征,通常会按照时间窗口在滑动,采集时间窗口上的统计特征
  • 还有对于季节性趋势做分解,区分哪些是季节性的部分,哪些是趋势的部分
  • 时间序列降维映射:对于细粒度的时间序列数据,数据量大,对于检测算法来说效率不高。降维方法**能保留时间序列的主要趋势等特征同时,降低维数,提供时间效率。这个对于用CNN的方式来进行时间序列分类特别有效,adtk主要提供基于pca的降维和重构方法,主要应用于多维时间序列。

4.1 滑动窗口

atdk提供单个宽口RollingAggregate和2个窗口DoubleRollingAggregate的滑动方式。统计特征支持均值,中位数,汇总,最大值,最小值,分位数, 方差,标准差,偏度,峰度,直方图 等,['mean', 'median', 'sum', 'min', 'max', 'quantile', 'iqr', 'idr', 'count', 'nnz', 'nunique', 'std', 'var', 'skew', 'kurt', 'hist']其中

  • 'iqr': 是分位数 75% 和 25%差值
  • 'idr': 是分位数 90% 和 10%插值
  • RollingAggregate
import pandas as pd
from adtk.data import validate_series
from adtk.transformer import RollingAggregate
from adtk.transformer import DoubleRollingAggregate
s = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)

s_transformed = RollingAggregate(agg='quantile',agg_params={"q": [0.25, 0.75]}, window=5).transform(s)
  • DoubleRollingAggregate 提供了两个窗口之间统计特征的差异特征,如前5分钟和后5分钟,均值的差值等。agg参数和RollingAggregate中一致,新增的参数diff主要衡量差距的函数:
import pandas as pd
from adtk.data import validate_series
from adtk.transformer import DoubleRollingAggregate
s = pd.read_csv('./data/ec2_cpu_utilization_53ea38.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)

s_transformed = DoubleRollingAggregate(
    agg="median",
    window=5,
    diff="diff").transform(s)

参数:

  • 'diff': 后减去前
  • 'rel_diff': Relative difference between values of aggregated metric (right minus left divided left). Only applicable if the aggregated metric is scalar.
  • 'abs_rel_diff': (后-前)/前, 相对差值
  • 'l1': l1正则
  • 'l2': l2正则

4.2 季节性拆解

时间序列可拆解成趋势性,季节性和残差部分。atdk中ClassicSeasonalDecomposition提供了这三个部分拆解,并移除趋势和季节性部分,返回残差部分。

  • freq: 设置季节性的周期
  • trend:可以设置是否保留趋势性
from adtk.transformer import ClassicSeasonalDecomposition
 
s = pd.read_csv('./data/nyc_taxi.csv', index_col="timestamp", parse_dates=True)
s = validate_series(s)
 
s_transformed = ClassicSeasonalDecomposition().fit_transform(s)
s_transformed = ClassicSeasonal
Decomposition(trend=True).fit_transform(s)

4.3 降维和重构

adtk提供的pca对数据进行降维到主成分PcaProjection和重构方法PcaReconstruction

df = pd.read_csv('./data/generator.csv', index_col="Time", parse_dates=True)
df = validate_series(df)

from adtk.transformer import PcaProjection
s = PcaProjection(k=1).fit_transform(df)
plot(pd.concat([df, s], axis=1), ts_linewidth=1, ts_markersize=3, curve_group=[("Speed (kRPM)", "Power (kW)"), "pc0"]);
from adtk.transformer import PcaReconstruction
df_transformed = PcaReconstruction(k=1).fit_transform(df).rename(columns={
                "Speed (kRPM)": "Speed reconstruction (kRPM)",
                "Power (kW)": "Power reconstruction (kW)"})
plot(pd.concat([df, df_transformed], axis=1), ts_linewidth=1, ts_markersize=3,
     curve_group=[("Speed (kRPM)", "Power (kW)"),
                  ("Speed reconstruction (kRPM)", 
                   "Power reconstruction (kW)")]);

5. 异常检测算法(detector)

adtk提供的主要是无监督或者基于规则的时间序列检测算法,可以用于常规的异常检测。

检测离群点离群点是和普通数据差异极大的数据点。adtk主要提供了包括 adtk.detector.ThresholdAD adtk.detector.QuantileAD adtk.detector.InterQuartileRangeAD adtk.detector.GeneralizedESDTestAD的检测算法。

ThresholdAD

"""
adtk.detector.ThresholdAD(low=None, high=None)
参数:
low:下限,小于此值,视为异常
high:上限,大于此值,视为异常
原理:通过认为设定上下限来识别异常
总结:固定阈值算法
"""

from adtk.detector import ThresholdAD
threshold_ad = ThresholdAD(high=30, low=15)
anomalies = threshold_ad.detect(s)

QuantileAD

adtk.detector.QuantileAD(low=None, high=None)
参数:
low:分位下限,范围(0,1),当low=0.25时,表示Q1
high:分位上限,范围(0,1),当low=0.25时,表示Q3
原理:通过历史数据计算出给定low与high对应的分位值Q_low,Q_high,小于Q_low或大于Q_high,视为异常
总结:分位阈值算法

from adtk.detector import QuantileAD
quantile_ad = QuantileAD(high=0.99, low=0.01)
anomalies = quantile_ad.fit_detect(s)

InterQuartileRangeAD

adtk.detector.InterQuartileRangeAD(c=3.0)

参数:c:分位距的系数,用来确定上下限,可为float,也可为(float,float)

原理:当c为float时,通过历史数据计算出 Q3+c*IQR 作为上限值,大于上限值视为异常,当c=(float1,float2)时,通过历史数据计算出 (Q1-c1*IQR, Q3+c2*IQR) 作为正常范围,不在正常范围视为异常

总结:箱线图算法

from adtk.detector import InterQuartileRangeAD
iqr_ad = InterQuartileRangeAD(c=1.5)
anomalies = iqr_ad.fit_detect(s)

GeneralizedESDTestAD

adtk.detector.GeneralizedESDTestAD(alpha=0.05)

参数:

  • alpha:显著性水平 (Significance level),alpha越小,表示识别出的异常约有把握是真异常。
  • 原理:将样本点的值与样本的均值作差后除以样本标准差,取最大值,通过t分布计算阈值,对比阈值确定异常点。

计算步骤简述:

  • 设置显著水平alpha,通常取0.05
  • 指定离群比例h,若h=5%,则表示50各样本中存在离群点数为2
  • 计算数据集的均值mu与标准差sigma,将所有样本与均值作差,取绝对值,再除以标准差,找出最大值,得到esd_1
  • 在剩下的样本点中,重复步骤3,可以得到h个esd值
  • 为每个esd值计算critical value: lambda_i (采用t分布计算)
  • 统计每个esd是否大于lambda_i,大于的认为你是异常
from adtk.detector import GeneralizedESDTestAD
esd_ad = GeneralizedESDTestAD(alpha=0.3)
anomalies = esd_ad.fit_detect(s)

突变:

Spike and Level Shift 异常的表现形式不是离群点,而是通过和邻近点的比较,即突增或者突降。adtk提供adtk.detector.PersistADadtk.detector.LevelShiftAD检测方法

PersistAD

adtk.detector.PersistAD(window=1, c=3.0, side='both', min_periods=None, agg='median')

参数:

  • window:参考窗长度,可为int, str
  • c:分位距倍数,用于确定上下限范围
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • min_periods:参考窗中最小个数,小于此个数将会报异常,默认为None,表示每个时间点都得有值
  • agg:参考窗中的统计量计算方式,因为当前值是与参考窗中产生的统计量作比较,所以得将参考窗中的数据计算成统计量,默
  • 认'median',表示去参考窗的中位值

原理:

  • 用滑动窗口遍历历史数据,将窗口后的一位数据与参考窗中的统计量做差,得到一个新的时间序列s1;
  • 计算s1的(Q1-cIQR, Q3+cIQR) 作为正常范围;
  • 若当前值与它参考窗中的统计量之差,不在2中的正常范围内,视为异常。

调参:

  • window:越大,模型越不敏感,不容易被突刺干扰
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小
  • min_periods:对缺失值的容忍程度,越大,越不允许有太多的缺失值
  • agg:统计量的聚合方式,跟统计量的特性有关,如 'median'不容易受极端值影响
  • 总结:先计算一条新的时间序列,再用箱线图作异常检测
  from adtk.detector import PersistAD
  persist_ad = PersistAD(c=3.0, side='positive')
  anomalies = persist_ad.fit_detect(s)

LevelShiftAD

adtk.detector.LevelShiftAD(window, c=6.0, side='both', min_periods=None)

参数:

  • window:支持(10,5),表示使用两个相邻的滑动窗,左侧的窗中的中位值表示参考值,右侧窗中的中位值表示当前值
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小,默认6.0
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • min_periods:参考窗中最小个数,小于此个数将会报异常,默认为None,表示每个时间点都得有值

原理:

该模型用于检测突变情况,相比于PersistAD,其抗抖动能力较强,不容易出现误报。

from adtk.detector import LevelShiftAD
level_shift_ad = LevelShiftAD(c=6.0, side='both', window=5)
anomalies = level_shift_ad.fit_detect(s)

季节性

adtk.detector.SeasonalAD

adtk.detector.SeasonalAD(freq=None, side='both', c=3.0, trend=False)

SeasonalAD主要是根据ClassicSeasonalDecomposition来处理,判断。

参数:

  • freq:季节性周期
  • c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小,默认6.0
  • side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测
  • trend:是否考虑趋势
from adtk.detector import SeasonalAD
seasonal_ad = SeasonalAD(c=3.0, side="both")
anomalies = seasonal_ad.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_color='red', 
     anomaly_tag="marker", anomaly_markersize=2);

pipe 组合算法

from adtk.pipe import Pipeline
steps = [
    ("deseasonal", ClassicSeasonalDecomposition()),
    ("quantile_ad", QuantileAD(high=0.995, low=0.005))
]
pipeline = Pipeline(steps)
anomalies = pipeline.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_markersize=2, 
     anomaly_tag="marker", anomaly_color='red');

6. 总结

本文介绍了时间序列异常检测的无监督算法工具包ADTK。ADTK提供了简单的异常检测算法和时间序列特征加工函数,希望对你有帮助。总结如下:

  • adtk要求输入数据为datetimeIndexvalidate_series来验证数据有效性,使得时间有序
  • adtk单窗口和double窗口滑动,加工统计特征
  • adtk分解时间序列的季节部分,获得时间序列的残差部分,可根据这个判断异常点
  • adtk支持离群点、突变和季节性异常检测。通过fit_detect 获取异常点序列,也可以通过Pipeline联通多部异常检测算法

相关推荐

深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能

引言在现代应用程序中,数据的存储和处理变得愈发复杂多样。MySQL8.0引入了丰富的JSON相关函数,为我们提供了更灵活的数据存储和检索方式。本文将深入探讨MySQL8.0中的JSON...

MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)

前言虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使...

MySQL的json查询之json_array(mysql json_search)

json_array顾名思义就是创建一个数组,实际的用法,我目前没有想到很好的使用场景。使用官方的例子说明一下吧。例一selectjson_array(1,2,3,4);json_array虽然单独...

头条创作挑战赛#一、LSTM 原理 长短期记忆网络

#头条创作挑战赛#一、LSTM原理长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度...

TensorBoard最全使用教程:看这篇就够了

机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍TensorFlow的开源工具套件,称为TensorBoard,虽然他是TensorFlow...

图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比

本文约4600字,建议阅读10分钟本文介绍了图神经网络版本的对比。KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Ar...

kornia,一个实用的 Python 库!(python kkb_tools)

大家好,今天为大家分享一个实用的Python库-kornia。Github地址:https://github.com/kornia/kornia/Kornia是一个基于PyTorch的开源计算...

图像分割掩码标注转YOLO多边形标注

Ultralytics团队付出了巨大的努力,使创建自定义YOLO模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练yolo分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的...

[python] 向量检索库Faiss使用指北

Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完...

如何把未量化的 70B 大模型加载到笔记本电脑上运行?

并行运行70B大模型我们已经看到,量化已经成为在低端GPU(比如Colab、Kaggle等)上加载大型语言模型(LLMs)的最常见方法了,但这会降低准确性并增加幻觉现象。那如果你和你的朋友们...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

人工智能——图像识别(人工智能图像识别流程)

概述图像识别(ImageRecognition)是计算机视觉的核心任务之一,旨在通过算法让计算机理解图像内容,包括分类(识别物体类别)、检测(定位并识别多个物体)、分割(像素级识别)等,常见的应用场...

PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法

在上一篇文章中,我们介绍了DeepDeterministicPolicyGradient(DDPG)算法,并使用它解决了Pendulum问题。本文将深入探讨TwinDelayed...

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

分组查询注意力(GroupedQueryAttention)是一种在大型语言模型中的多查询注意力(MQA)和多头注意力(MHA)之间进行插值的方法,它的目标是在保持MQA速度的同时...

pytorch如何快速创建具有特殊意思的tensor张量?

专栏推荐正文我们通过值可以看到torch.empty并没有进行初始化创建tensor并进行随机初始化操作,常用rand/rand_like,randint正态分布(0,1)指定正态分布的均值还有方差i...