Python神器Pandas 之 JSON(python .json)
liuian 2025-04-06 18:06 39 浏览
Pandas 提供了强大的方法来处理 JSON 格式的数据,支持从 JSON 文件或字符串中读取数据并将其转换为 DataFrame,以及将 DataFrame 转换回 JSON 格式。 使用Pandas加载JSON数据其实非常简单,直接使用`read_json`函数即可。不过,需要注意的是‘orient`参数,它可以根据JSON数据的组织方式选择不同的值。常见的选项有:`split`、`records`、`index`、`columns`和`values`。
此外,Pandas还提供了一个非常实用的方法`json_normalize`,可以灵活地加载不同格式的JSON数据。无论你的JSON数据是什么结构,这个方法都能帮你轻松搞定。
操作 | 方法 | 说明 |
从 JSON 文件/字符串读取数据 | pd.read_json() | 从 JSON 数据中读取并加载为 DataFrame |
将 DataFrame 转换为 JSON | DataFrame.to_json() | 将 DataFrame 转换为 JSON 格式的数据,可以指定结构化方式 |
支持 JSON 结构化方式 | orient 参数 | 支持多种结构化方式,如 split、records、columns |
pd.read_json() - 读取 JSON 数据
pd.read_json() 用于从 JSON 格式的数据中读取并加载为一个 DataFrame。它支持从 JSON 文件、JSON 字符串或 JSON 网址中加载数据。
语法格式:
import pandas as pd
df = pd.read_json(
path_or_buffer, # JSON 文件路径、JSON 字符串或 URL
orient=None, # JSON 数据的结构方式,默认是 'columns'
dtype=None, # 强制指定列的数据类型
convert_axes=True, # 是否转换行列索引
convert_dates=True, # 是否将日期解析为日期类型
keep_default_na=True # 是否保留默认的缺失值标记
)完整形式:
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, encoding_errors='strict', lines=False, chunksize=None, compression='infer', nrows=None, storage_options=None)
参数说明:
参数 | 说明 | 默认值 |
path_or_buffer | JSON 文件的路径、JSON 字符串或 URL | 必需参数 |
orient | 定义 JSON 数据的格式方式。常见值有 split、records、index、columns、values。 | None(根据文件自动推断) |
dtype | 强制指定列的数据类型 | None |
convert_axes | 是否将轴转换为合适的数据类型 | True |
convert_dates | 是否将日期解析为日期类型 | True |
keep_default_na | 是否保留默认的缺失值标记(如 NaN) | True |
常见的 orient 参数选项:
orient 值 | JSON 格式示例 | 描述 |
split | {"index":["a","b"],"columns":["A","B"],"data":[[1,2],[3,4]]} | 使用键 index、columns 和 data 结构 |
records | [{"A":1,"B":2},{"A":3,"B":4}] | 每个记录是一个字典,表示一行数据 |
index | {"a":{"A":1,"B":2},"b":{"A":3,"B":4}} | 使用索引为键,值为字典的方式 |
columns | {"A":{"a":1,"b":3},"B":{"a":2,"b":4}} | 使用列名为键,值为字典的方式 |
values | [[1,2],[3,4]] | 只返回数据,不包括索引和列名 |
从 JSON 文件加载数据:
实例
import pandas as pd
df = pd.read_json('data.json')
print(df.to_string())
to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。
将 DataFrame 转换为 JSON
DataFrame.to_json() - 将 DataFrame 转换为 JSON 数据
to_json() 方法用于将 DataFrame 转换为 JSON 格式的数据,可以指定 JSON 的结构化方式。
语法格式:
df.to_json(
path_or_buffer=None, # 输出的文件路径或文件对象,如果是 None 则返回 JSON 字符串
orient=None, # JSON 格式方式,支持 'split', 'records', 'index', 'columns', 'values'
date_format=None, # 日期格式,支持 'epoch', 'iso'
default_handler=None, # 自定义非标准类型的处理函数
lines=False, # 是否将每行数据作为一行(适用于 'records' 或 'split')
encoding='utf-8' # 编码格式
)完整形式:
DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]
参数说明:
参数 | 说明 | 默认值 |
path_or_buffer | 输出的文件路径或文件对象,若为 None,则返回 JSON 字符串 | None |
orient | 指定 JSON 格式结构,支持 split、records、index、columns、values | None(默认是 columns) |
date_format | 日期格式,支持 'epoch' 或 'iso' 格式 | None |
default_handler | 自定义处理非标准类型(如 datetime 等)的处理函数 | None |
lines | 是否将每行数据作为一行输出(适用于 records 或 split) | False |
encoding | 输出文件的编码格式 | 'utf-8' |
实例
import pandas as pd
# 创建 DataFrame
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
# 将 DataFrame 转换为 JSON 字符串
json_str = df.to_json()
print(json_str)
将 DataFrame 转换为 JSON 文件(指定 orient='records'):
实例
import pandas as pd
# 创建 DataFrame
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
# 将 DataFrame 转换为 JSON 文件,指定 orient='records'
df.to_json('data.json', orient='records', lines=True)
# 输出生成的文件内容:
# [
# {"Name":"Alice","Age":25,"City":"New York"},
# {"Name":"Bob","Age":30,"City":"Los Angeles"},
# {"Name":"Charlie","Age":35,"City":"Chicago"}
# ]
将 DataFrame 转换为 JSON 并指定日期格式:
实例
import pandas as pd
# 创建 DataFrame,包含日期数据
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Date': pd.to_datetime(['2021-01-01', '2022-02-01', '2023-03-01']),
'Age': [25, 30, 35]
})
# 将 DataFrame 转换为 JSON,并指定日期格式为 'iso'
json_str = df.to_json(date_format='iso')
print(json_str)
相关推荐
- 搭建一个20人的办公网络(适用于20多人的小型办公网络环境)
-
楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...
- 笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)
-
1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...
- 汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)
-
使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...
- xpsp3安装版系统下载(windowsxpsp3安装教程)
-
xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...
- 没有备份的手机数据怎么恢复
-
手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。 2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。 3、...
- 电脑怎么激活windows11专业版
-
win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...
- 华为手机助手下载官网(华为手机助手app下载专区)
-
华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...
- 光纤线断了怎么接(宽带光纤线断了怎么接)
-
宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...
- win7旗舰版和专业版区别(win7旗舰版跟专业版)
-
1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...
- 万能连接钥匙(万能wifi连接钥匙下载)
-
1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...
- 雨林木风音乐叫什么(雨林木风是啥)
-
雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...
- aics6序列号永久序列号(aics6破解序列号)
-
关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...
- 手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)
-
答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
