Python神器Pandas 之 JSON(python .json)
liuian 2025-04-06 18:06 21 浏览
Pandas 提供了强大的方法来处理 JSON 格式的数据,支持从 JSON 文件或字符串中读取数据并将其转换为 DataFrame,以及将 DataFrame 转换回 JSON 格式。 使用Pandas加载JSON数据其实非常简单,直接使用`read_json`函数即可。不过,需要注意的是‘orient`参数,它可以根据JSON数据的组织方式选择不同的值。常见的选项有:`split`、`records`、`index`、`columns`和`values`。
此外,Pandas还提供了一个非常实用的方法`json_normalize`,可以灵活地加载不同格式的JSON数据。无论你的JSON数据是什么结构,这个方法都能帮你轻松搞定。
操作 | 方法 | 说明 |
从 JSON 文件/字符串读取数据 | pd.read_json() | 从 JSON 数据中读取并加载为 DataFrame |
将 DataFrame 转换为 JSON | DataFrame.to_json() | 将 DataFrame 转换为 JSON 格式的数据,可以指定结构化方式 |
支持 JSON 结构化方式 | orient 参数 | 支持多种结构化方式,如 split、records、columns |
pd.read_json() - 读取 JSON 数据
pd.read_json() 用于从 JSON 格式的数据中读取并加载为一个 DataFrame。它支持从 JSON 文件、JSON 字符串或 JSON 网址中加载数据。
语法格式:
import pandas as pd
df = pd.read_json(
path_or_buffer, # JSON 文件路径、JSON 字符串或 URL
orient=None, # JSON 数据的结构方式,默认是 'columns'
dtype=None, # 强制指定列的数据类型
convert_axes=True, # 是否转换行列索引
convert_dates=True, # 是否将日期解析为日期类型
keep_default_na=True # 是否保留默认的缺失值标记
)
完整形式:
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, encoding_errors='strict', lines=False, chunksize=None, compression='infer', nrows=None, storage_options=None)
参数说明:
参数 | 说明 | 默认值 |
path_or_buffer | JSON 文件的路径、JSON 字符串或 URL | 必需参数 |
orient | 定义 JSON 数据的格式方式。常见值有 split、records、index、columns、values。 | None(根据文件自动推断) |
dtype | 强制指定列的数据类型 | None |
convert_axes | 是否将轴转换为合适的数据类型 | True |
convert_dates | 是否将日期解析为日期类型 | True |
keep_default_na | 是否保留默认的缺失值标记(如 NaN) | True |
常见的 orient 参数选项:
orient 值 | JSON 格式示例 | 描述 |
split | {"index":["a","b"],"columns":["A","B"],"data":[[1,2],[3,4]]} | 使用键 index、columns 和 data 结构 |
records | [{"A":1,"B":2},{"A":3,"B":4}] | 每个记录是一个字典,表示一行数据 |
index | {"a":{"A":1,"B":2},"b":{"A":3,"B":4}} | 使用索引为键,值为字典的方式 |
columns | {"A":{"a":1,"b":3},"B":{"a":2,"b":4}} | 使用列名为键,值为字典的方式 |
values | [[1,2],[3,4]] | 只返回数据,不包括索引和列名 |
从 JSON 文件加载数据:
实例
import pandas as pd
df = pd.read_json('data.json')
print(df.to_string())
to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。
将 DataFrame 转换为 JSON
DataFrame.to_json() - 将 DataFrame 转换为 JSON 数据
to_json() 方法用于将 DataFrame 转换为 JSON 格式的数据,可以指定 JSON 的结构化方式。
语法格式:
df.to_json(
path_or_buffer=None, # 输出的文件路径或文件对象,如果是 None 则返回 JSON 字符串
orient=None, # JSON 格式方式,支持 'split', 'records', 'index', 'columns', 'values'
date_format=None, # 日期格式,支持 'epoch', 'iso'
default_handler=None, # 自定义非标准类型的处理函数
lines=False, # 是否将每行数据作为一行(适用于 'records' 或 'split')
encoding='utf-8' # 编码格式
)
完整形式:
DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]
参数说明:
参数 | 说明 | 默认值 |
path_or_buffer | 输出的文件路径或文件对象,若为 None,则返回 JSON 字符串 | None |
orient | 指定 JSON 格式结构,支持 split、records、index、columns、values | None(默认是 columns) |
date_format | 日期格式,支持 'epoch' 或 'iso' 格式 | None |
default_handler | 自定义处理非标准类型(如 datetime 等)的处理函数 | None |
lines | 是否将每行数据作为一行输出(适用于 records 或 split) | False |
encoding | 输出文件的编码格式 | 'utf-8' |
实例
import pandas as pd
# 创建 DataFrame
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
# 将 DataFrame 转换为 JSON 字符串
json_str = df.to_json()
print(json_str)
将 DataFrame 转换为 JSON 文件(指定 orient='records'):
实例
import pandas as pd
# 创建 DataFrame
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
# 将 DataFrame 转换为 JSON 文件,指定 orient='records'
df.to_json('data.json', orient='records', lines=True)
# 输出生成的文件内容:
# [
# {"Name":"Alice","Age":25,"City":"New York"},
# {"Name":"Bob","Age":30,"City":"Los Angeles"},
# {"Name":"Charlie","Age":35,"City":"Chicago"}
# ]
将 DataFrame 转换为 JSON 并指定日期格式:
实例
import pandas as pd
# 创建 DataFrame,包含日期数据
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Date': pd.to_datetime(['2021-01-01', '2022-02-01', '2023-03-01']),
'Age': [25, 30, 35]
})
# 将 DataFrame 转换为 JSON,并指定日期格式为 'iso'
json_str = df.to_json(date_format='iso')
print(json_str)
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)