用Python让图表动起来,居然这么简单
liuian 2025-04-06 18:06 15 浏览
我好像看到这个emoji:动起来了!
编译:佑铭
参考:
https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1
用Matplotlib和Seaborn这类Python库可以画出很好看的图,但是这些图只是静态的,难以动态且美观地呈现数值变化。要是在你下次的演示、视频、社交媒体Po文里能用短视频呈现数据变化,是不是很赞呢?更棒的是,你还是可以在你的图表上用Matplotlib、Seaborn或者其他库!
本文将使用美国国家药物滥用研究所和疾病预防控制中心公布的阿片类药物数据,可在此处下载:
https://www.drugabuse.gov/sites/default/files/overdosedata1999-2015.xls
我们会用到的数据是这样的:
https://www.drugabuse.gov/sites/default/files/overdose_data_1999-2015.xls.
我们将用Matplotlib和Seaborn绘图,用Numpy和Pandas处理数据。Matplotlib也提供了一些我们做动画可以的函数,所以让我们首先导入所有依赖项。
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
然后用Pandas载入数据并转成DataFrame类型的数据结构。因为我们要针对不同阿片类药物的滥用画图,写个函数来载入感兴趣的特定行的数据能避免重复代码。(小编注:原文提供的代码在读取excel文件的时候使用了已废弃的sheetname参数,本文中已修正为sheet_name)
overdoses = pd.read_excel('overdose_data_1999-2015.xls',sheet_name='Online',skiprows =6)
def get_data(table,rownum,title):
data = pd.DataFrame(table.loc[rownum][2:]).astype(float)
data.columns = {title}
return data
现在让我们来做动画吧!
首先,如果你和我一样使用的是jupyter notebook,请在代码首行加入 %matplotlib notebook
,如此便可在notebook直接看到生成的动画而非保存后才可见。
Python 环境搭建以及神器推荐,果断转走!
我现在使用 get_data
函数从表中检索海洛因过量的数据并放在有两列的Pandas DataFrame中,一列是年,一列是过量死亡的人数。
%matplotlib notebook
title = 'Heroin Overdoses'
d = get_data(overdoses,18,title)
x = np.array(d.index)
y = np.array(d['Heroin Overdoses'])
overdose = pd.DataFrame(y,x)
#XN,YN = augment(x,y,10)
#augmented = pd.DataFrame(YN,XN)
overdose.columns = {title}
接下来我们初始化一个ffmpeg Writer并以20帧每秒、1800比特率进行录屏。你也可以根据喜好自行设置这些值。
Writer = animation.writers['ffmpeg']
writer = Writer(fps=20, metadata=dict(artist='Me'), bitrate=1800)
(小编注:如果出现
的报错,请自行安装ffmpeg,装了brew的Mac可以直接:
RuntimeError:RequestedMovieWriter(ffmpeg)notavailablebrew install ffmpeg
)
现在我们创建一个有几个标签的图形。确保设置x和y轴的限制,以免动画随当前显示的数据范围乱跳转。
fig = plt.figure(figsize=(10,6))
plt.xlim(1999, 2016)
plt.ylim(np.min(overdose)[0], np.max(overdose)[0])
plt.xlabel('Year',fontsize=20)
plt.ylabel(title,fontsize=20)
plt.title('Heroin Overdoses per Year',fontsize=20)
动画的核心是动画函数,你可以在其中定义视频的每一帧发生什么。这里的 i
表示动画中帧的索引。使用这个索引可以选择应在此帧中可见的数据范围。然后我使用seaborn线图来绘制所选的数据。最后两行代码只是为了让图表更美观。
def animate(i):
data = overdose.iloc[:int(i+1)] #选择数据范围
p = sns.lineplot(x=data.index, y=data[title], data=data, color="r")
p.tick_params(labelsize=17)
plt.setp(p.lines,linewidth=7)
我们用调用了 animate
函数并定义了帧数的
来开始动画,
matplotlib.animation.FuncAnimationframes
实际上定义了调用animate
的频率。
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=17, repeat=True)
你可以用 ani.save
把动画保存为mp4,如果你想直接看一看动画效果可以用plt.show
。
ani.save('HeroinOverdosesJumpy.mp4', writer=writer)
现在我们的图表动起来啦:
动画能够正常运行但是感觉有点跳跃,所以我们需要在已有数据点之间增加更多的数据点来使动画的过渡平滑。于是我们使用另一个函数 augment
。
def augment(xold,yold,numsteps):
xnew =
ynew =
for i in range(len(xold)-1):
difX = xold[i+1]-xold[i]
stepsX = difX/numsteps
difY = yold[i+1]-yold[i]
stepsY = difY/numsteps
for s in range(numsteps):
xnew = np.append(xnew,xold[i]+s*stepsX)
ynew = np.append(ynew,yold[i]+s*stepsY)
return xnew,ynew
现在我们只需要对我们的数据应用这个函数、增加
函数的帧数。在这里我用参数
matplotlib.animation.FuncAnimationnumsteps=10
调用augment
函数,也就是增加数据点至160个,并且设置frames=160
。这样以来,图表显得更为平滑,但还是在数值变动处有些突兀。
为了让我们的动画更平滑美观,我们可以增加一个平滑函数(具体请见:
https://www.swharden.com/wp/2008-11-17-linear-data-smoothing-in-python/ )。
def smoothListGaussian(listin,strippedXs=False,degree=5):
window=degree*2-1
weight=np.array([1.0]*window)
weightGauss=
for i in range(window):
i=i-degree+1
frac=i/float(window)
gauss=1/(np.exp((4*(frac))**2))
weightGauss.append(gauss)
weight=np.array(weightGauss)*weight
smoothed=[0.0]*(len(listin)-window)
for i in range(len(smoothed)): smoothed[i]=sum(np.array(listin[i:i+window])*weight)/sum(weight)
return smoothed
另外我们也可以加上一点颜色和样式参数,让图表更个性化。
sns.set(rc={'axes.facecolor':'lightgrey', 'figure.facecolor':'lightgrey','figure.edgecolor':'black','axes.grid':False})
当当当!如此我们便得到了文章开头的动画图表。
这篇文章仅仅只是matplotlib动画功能的一个例子,你大可以用它来实现任何一种图表的动画效果。简单调整 animate
函数内的参数和图表类型,就能得到无穷无尽的可能性。
(完)
相关推荐
- x-cmd install | jellex - 用 Python 语法在终端里玩转 JSON 数据!
-
还在为命令行下处理JSON数据烦恼吗?jellex来了!它是一款基于终端的交互式JSON和JSONLines数据处理工具,让你用熟悉的Python语法,轻松过滤、转换和探索JSO...
- 一篇长文带你在Python里玩转Json数据
-
Json简介Json(JavaScriptObjectNotation)很多网站都会用到Json格式来进行数据的传输和交换,就像上篇我提到的网易云音乐接口,它们返回的数据都是Json格式的。这因为...
- Python JSON 魔法手册:数据转换的终极艺术
-
对话实录小白:(崩溃)我从API拿到了JSON数据,怎么变成Python对象?专家:(掏出魔法书)用json模块,轻松实现数据转换!JSON基础三连击1.字符串Python对...
- Python JSON 详解教程(python json())
-
JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式(lightweightdatainterchangeformat)常用于Web应用、配置文件(co...
- Python 数据的 JSON 格式序列化及反序列化
-
在Python中,将数据转换为JSON格式非常简单,可以使用内置的json模块。json模块提供了json.dumps()和json.dump()方法,用于将Python对象...
- 如何使Python类可JSON序列化(python json 类)
-
技术背景在Python开发中,JSON(JavaScriptObjectNotation)是一种常用的数据交换格式。然而,Python的json模块默认只能序列化一些基本数据类型,如字典、列表、字...
- 详细介绍一下Python如何对JSON格式数据进行处理?
-
在Python中对于JSON数据的处理是在日常开发中的常见需求之一。通常情况下,对JSON数据的处理主要涉及到如下的的几个步骤对于JSON数据的解析操作对于JSON数据的处理操作对于JSON数据的格式...
- Python 字典l转换成 JSON(python转化字典)
-
本文需要5分钟。如果对您有用可以点赞评论关注.Python字典到JSONJSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式,它基于ECMAScrip...
- 打造熟悉的VS界面风格(vs界面设计美化)
-
用惯了老机子的VS界面,换新机子时,各种不适应。现在重新打造老款样式:1)下载VisualStudio2013ColorThemeEditorhttps://marketplace.vis...
- 办公小技巧:全部亮相 让Excel单元格完全显示文本
-
平时我们在使用Excel制作表格的时候,经常会遇到由于文本内容较多,导致这些内容无法在一个单元格中完全显示。常规的方法是将单元格设置为“自动换行”,但是这样会影响整个文件的美观。下例是某小区的入住登记...
- WinForms 中的 CheckBox 控件使用指南
-
在WinForms中,CheckBox控件是一个允许用户选择或取消选择的单选按钮。它通常用于表示布尔值(真/假)或允许多选的情况。以下是如何使用CheckBox控件的一些基本信息和示例代码。创建...
- 图片转文字--四种OCR工具的安装和使用
-
本文仅测试简单的安装和使用,下一步应该是测试不同数据集下的检测准确率和检测效率,敬请期待。作者的系统环境是:笔记本:ThindPadP520OS:win11显卡:QuadroP520一、EasyO...
- C# 给Word每一页设置不同图片水印
-
Word中设置水印时,可加载图片设置为水印效果,但通常添加水印效果时,会对所有页面都设置成统一效果,如果需要对每一页或者某个页面设置不同的水印效果,则可以参考本文中的方法。下面,将以C#代码为例,对W...
- 集成的面向对象控件Xtreme Controls正式发布v17.0.0
-
CodejockXtremeControls为Windows图形用户软件工程师提供众多的有关MFC的控件产品,该产品是通过完全测试并专门为图形用户设计的一款专业控件。它是一款集成了面向对象的控件被...
- Win10 Build 10061老问题修复新问题来
-
|责编:刘菲菲【中关村在线软件资讯】4月23日消息:微软今天正式推送了Windows10Build10061预览版这个版本除了正常的功能更新和调整外,还修复了多个bug。其中一部分对于开发者开...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
-
- x-cmd install | jellex - 用 Python 语法在终端里玩转 JSON 数据!
- 一篇长文带你在Python里玩转Json数据
- Python JSON 魔法手册:数据转换的终极艺术
- Python JSON 详解教程(python json())
- Python 数据的 JSON 格式序列化及反序列化
- 如何使Python类可JSON序列化(python json 类)
- 详细介绍一下Python如何对JSON格式数据进行处理?
- Python 字典l转换成 JSON(python转化字典)
- 打造熟悉的VS界面风格(vs界面设计美化)
- 办公小技巧:全部亮相 让Excel单元格完全显示文本
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)