百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

用Python让图表动起来,居然这么简单

liuian 2025-04-06 18:06 28 浏览

我好像看到这个emoji:动起来了!

编译:佑铭

参考:

https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1

用Matplotlib和Seaborn这类Python库可以画出很好看的图,但是这些图只是静态的,难以动态且美观地呈现数值变化。要是在你下次的演示、视频、社交媒体Po文里能用短视频呈现数据变化,是不是很赞呢?更棒的是,你还是可以在你的图表上用Matplotlib、Seaborn或者其他库!

本文将使用美国国家药物滥用研究所和疾病预防控制中心公布的阿片类药物数据,可在此处下载:

https://www.drugabuse.gov/sites/default/files/overdosedata1999-2015.xls

我们会用到的数据是这样的:

https://www.drugabuse.gov/sites/default/files/overdose_data_1999-2015.xls.

我们将用Matplotlib和Seaborn绘图,用Numpy和Pandas处理数据。Matplotlib也提供了一些我们做动画可以的函数,所以让我们首先导入所有依赖项。

  1. import numpy as np

  2. import pandas as pd

  3. import seaborn as sns

  4. import matplotlib

  5. import matplotlib.pyplot as plt

  6. import matplotlib.animation as animation

然后用Pandas载入数据并转成DataFrame类型的数据结构。因为我们要针对不同阿片类药物的滥用画图,写个函数来载入感兴趣的特定行的数据能避免重复代码。(小编注:原文提供的代码在读取excel文件的时候使用了已废弃的sheetname参数,本文中已修正为sheet_name)

  1. overdoses = pd.read_excel('overdose_data_1999-2015.xls',sheet_name='Online',skiprows =6)

  2. def get_data(table,rownum,title):

  3. data = pd.DataFrame(table.loc[rownum][2:]).astype(float)

  4. data.columns = {title}

  5. return data

现在让我们来做动画吧!

首先,如果你和我一样使用的是jupyter notebook,请在代码首行加入 %matplotlib notebook,如此便可在notebook直接看到生成的动画而非保存后才可见。

Python 环境搭建以及神器推荐,果断转走!

我现在使用 get_data函数从表中检索海洛因过量的数据并放在有两列的Pandas DataFrame中,一列是年,一列是过量死亡的人数。

  1. %matplotlib notebook

  2. title = 'Heroin Overdoses'

  3. d = get_data(overdoses,18,title)

  4. x = np.array(d.index)

  5. y = np.array(d['Heroin Overdoses'])

  6. overdose = pd.DataFrame(y,x)

  7. #XN,YN = augment(x,y,10)

  8. #augmented = pd.DataFrame(YN,XN)

  9. overdose.columns = {title}

接下来我们初始化一个ffmpeg Writer并以20帧每秒、1800比特率进行录屏。你也可以根据喜好自行设置这些值。

  1. Writer = animation.writers['ffmpeg']

  2. writer = Writer(fps=20, metadata=dict(artist='Me'), bitrate=1800)

(小编注:如果出现
RuntimeError:RequestedMovieWriter(ffmpeg)notavailable
的报错,请自行安装ffmpeg,装了brew的Mac可以直接:brew install ffmpeg

现在我们创建一个有几个标签的图形。确保设置x和y轴的限制,以免动画随当前显示的数据范围乱跳转。

  1. fig = plt.figure(figsize=(10,6))

  2. plt.xlim(1999, 2016)

  3. plt.ylim(np.min(overdose)[0], np.max(overdose)[0])

  4. plt.xlabel('Year',fontsize=20)

  5. plt.ylabel(title,fontsize=20)

  6. plt.title('Heroin Overdoses per Year',fontsize=20)

动画的核心是动画函数,你可以在其中定义视频的每一帧发生什么。这里的 i表示动画中帧的索引。使用这个索引可以选择应在此帧中可见的数据范围。然后我使用seaborn线图来绘制所选的数据。最后两行代码只是为了让图表更美观。

  1. def animate(i):

  2. data = overdose.iloc[:int(i+1)] #选择数据范围

  3. p = sns.lineplot(x=data.index, y=data[title], data=data, color="r")

  4. p.tick_params(labelsize=17)

  5. plt.setp(p.lines,linewidth=7)

我们用调用了 animate函数并定义了帧数的
matplotlib.animation.FuncAnimation
来开始动画,frames实际上定义了调用animate的频率。

  1. ani = matplotlib.animation.FuncAnimation(fig, animate, frames=17, repeat=True)

你可以用 ani.save把动画保存为mp4,如果你想直接看一看动画效果可以用plt.show

  1. ani.save('HeroinOverdosesJumpy.mp4', writer=writer)

现在我们的图表动起来啦:

动画能够正常运行但是感觉有点跳跃,所以我们需要在已有数据点之间增加更多的数据点来使动画的过渡平滑。于是我们使用另一个函数 augment

  1. def augment(xold,yold,numsteps):

  2. xnew =

  3. ynew =

  4. for i in range(len(xold)-1):

  5. difX = xold[i+1]-xold[i]

  6. stepsX = difX/numsteps

  7. difY = yold[i+1]-yold[i]

  8. stepsY = difY/numsteps

  9. for s in range(numsteps):

  10. xnew = np.append(xnew,xold[i]+s*stepsX)

  11. ynew = np.append(ynew,yold[i]+s*stepsY)

  12. return xnew,ynew

现在我们只需要对我们的数据应用这个函数、增加
matplotlib.animation.FuncAnimation
函数的帧数。在这里我用参数numsteps=10调用augment函数,也就是增加数据点至160个,并且设置frames=160。这样以来,图表显得更为平滑,但还是在数值变动处有些突兀。

为了让我们的动画更平滑美观,我们可以增加一个平滑函数(具体请见:
https://www.swharden.com/wp/2008-11-17-linear-data-smoothing-in-python/ )。

  1. def smoothListGaussian(listin,strippedXs=False,degree=5):

  2. window=degree*2-1

  3. weight=np.array([1.0]*window)

  4. weightGauss=

  5. for i in range(window):

  6. i=i-degree+1

  7. frac=i/float(window)

  8. gauss=1/(np.exp((4*(frac))**2))

  9. weightGauss.append(gauss)

  10. weight=np.array(weightGauss)*weight

  11. smoothed=[0.0]*(len(listin)-window)

  12. for i in range(len(smoothed)): smoothed[i]=sum(np.array(listin[i:i+window])*weight)/sum(weight)

  13. return smoothed

另外我们也可以加上一点颜色和样式参数,让图表更个性化。

  1. sns.set(rc={'axes.facecolor':'lightgrey', 'figure.facecolor':'lightgrey','figure.edgecolor':'black','axes.grid':False})

当当当!如此我们便得到了文章开头的动画图表。

这篇文章仅仅只是matplotlib动画功能的一个例子,你大可以用它来实现任何一种图表的动画效果。简单调整 animate函数内的参数和图表类型,就能得到无穷无尽的可能性。

(完)

相关推荐

教你把多个视频合并成一个视频的方法

一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...

零代码编程:用kimichat合并一个文件夹下的多个文件

一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...

Java APT_java APT 生成代码

JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...

Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器

在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...

挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?

如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...

五年后,谷歌还在全力以赴发展 Kotlin

作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...

kotlin和java开发哪个好,优缺点对比

Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...

移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?

掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...

颜值非常高的XShell替代工具Termora,不一样的使用体验!

Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...

预处理的底层原理和预处理编译运行异常的解决方案

若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...

为“架构”再建个模:如何用代码描述软件架构?

在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...

深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型

2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...

比分网开发技术栈与功能详解_比分网有哪些

一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...

设计模式之-生成器_一键生成设计

一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...

构建第一个 Kotlin Android 应用_kotlin简介

第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...