百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

20个能够有效提高 Pandas数据分析效率的常用函数 附带解释和例子

liuian 2025-02-15 16:30 14 浏览



Pandas是一个受众广泛的python数据分析库。它提供了许多函数和方法来加快数据分析过程。pandas之所以如此普遍,是因为它的功能强大、灵活简单。本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。

首先,我们导入 numpy和 pandas包。

import numpy as npimport pandas as pd

1. Query

我们有时需要根据条件筛选数据,一个简单方法是query函数。为了更直观理解这个函数,我们首先创建一个示例 dataframe。

values_1 = np.random.randint(10, size=10)values_2 = np.random.randint(10, size=10)years = np.arange(2010,2020)groups = ['A','A','B','A','B','B','C','A','C','C']df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2})df


使用query函数的语法十分简单:

df.query('value_1 < value_2')


2. Insert

当我们想要在 dataframe 里增加一列数据时,默认添加在最后。当我们需要添加在任意位置,则可以使用 insert 函数。使用该函数只需要指定插入的位置、列名称、插入的对象数据。

# new columnnew_col = np.random.randn(10)# insert the new column at position 2df.insert(2, 'new_col', new_col)df


3. Cumsum

示例dataframe 包含3个小组的年度数据。我们可能只对年度数据感兴趣,但在某些情况下,我们同样还需要一个累计数据。Pandas提供了一个易于使用的函数来计算加和,即cumsum。

如果我们只是简单使用cumsum函数,(A,B,C)组别将被忽略。这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。

df['cumsum_2'] = df[['value_2','group'].groupby('group').cumsum()]df


4. Sample

Sample方法允许我们从DataFrame中随机选择数据。当我们想从一个分布中选择一个随机样本时,这个函数很有用。

sample1 = df.sample(n=3)sample1


上述代码中,我们通过指定采样数量 n 来进行随机选取。此外,也可以通过指定采样比例 frac 来随机选取数据。当 frac=0.5时,将随机返回一般的数据。

sample2 = df.sample(frac=0.5)sample2


为了获得可重复的样品,我们可以指定random_state参数。如果将整数值传递给random_state,则每次运行代码时都将生成相同的采样数据。

5. Where

where函数用于指定条件的数据替换。如果不指定条件,则默认替换值为 NaN。

df['new_col'].where(df['new_col'] > 0, 0)


where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。上述代码中,where(df['new_col']>0,0)指定'new_col'列中数值大于0的所有数据为被替换对象,并且被替换为0。

重要的一点是,pandas 和 numpy的where函数并不完全相同。我们可以得到相同的结果,但语法存在差异。Np.where还需要指定列对象。以下两行返回相同的结果:

df['new_col'].where(df['new_col'] > 0, 0)np.where(df['new_col'] > 0, df['new_col'], 0)

6. Isin

在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。

years = ['2010','2014','2017']df[df.year.isin(years)]


7. Loc 和 iloc

Loc 和 iloc 函数用于选择行或者列。

· loc:通过标签选择

· iloc:通过位置选择

loc用于按标签选择数据。列的标签是列名。对于行标签,如果我们不分配任何特定的索引,pandas默认创建整数索引。因此,行标签是从0开始向上的整数。与iloc一起使用的行位置也是从0开始的整数。

下述代码实现选择前三行前两列的数据(iloc方式):

df.iloc[:3,:2]


下述代码实现选择前三行前两列的数据(loc方式):

df.loc[:2,['group','year']]


注:当使用loc时,包括索引的上界,而使用iloc则不包括索引的上界。

下述代码实现选择"1","3","5"行、"year","value_1"列的数据(loc方式):

df.loc[[1,3,5],['year','value_1']]


8. Pct_change

此函数用于计算一系列值的变化百分比。假设我们有一个包含[2,3,6]的序列。如果我们对这个序列应用pct_change,则返回的序列将是[NaN,0.5,1.0]。从第一个元素到第二个元素增加了50%,从第二个元素到第三个元素增加了100%。Pct_change函数用于比较元素时间序列中的变化百分比。

df.value_1.pct_change()


9. Rank

Rank函数实现对数据进行排序。假设我们有一个包含[1,7,5,3]的序列。分配给这些值的等级为[1,4,3,2]。

df['rank_1'] = df['value_1'].rank()df


10. Melt

Melt用于将维数较大的 dataframe转换为维数较少的 dataframe。一些dataframe列中包含连续的度量或变量。在某些情况下,将这些列表示为行可能更适合我们的任务。考虑以下情况:


我们有三个不同的城市,在不同的日子进行测量。我们决定将这些日子表示为列中的行。还将有一列显示测量值。我们可以通过使用'melt'函数轻松实现:

df_wide.melt(id_vars=['city'])df


变量名和列名通常默认给出。我们也可以使用melt函数的varname和valuename参数来指定新的列名。

11. Explode

假设数据集在一个观测(行)中包含一个要素的多个条目,但您希望在单独的行中分析它们。


我们想在不同的行上看到"c"的测量值,这很容易用explode来完成。

df1.explode('measurement').reset_index(drop=True)df


12. Nunique

Nunique统计列或行上的唯一条目数。它在分类特征中非常有用,特别是在我们事先不知道类别数量的情况下。让我们看看我们的初始数据:


df.year.nunique()10df.group.nunique()3

我们可以直接将nunique函数应用于dataframe,并查看每列中唯一值的数量:


如果axis参数设置为1,nunique将返回每行中唯一值的数目。

13. Lookup

'lookup'可以用于根据行、列的标签在dataframe中查找指定值。假设我们有以下数据:


我们要创建一个新列,该列显示"person"列中每个人的得分:

df['Person_point'] = df.lookup(df.index, df['Person'])df


14. Infer_objects

Pandas支持广泛的数据类型,其中之一就是object。object包含文本或混合(数字和非数字)值。但是,如果有其他选项可用,则不建议使用对象数据类型。使用更具体的数据类型,某些操作执行得更快。例如,对于数值,我们更喜欢使用整数或浮点数据类型。

infer_objects尝试为对象列推断更好的数据类型。考虑以下数据:


df2.dtypesA object B object C object D object dtype: object

通过上述代码可知,现有所有的数据类型默认都是object。让我们看看推断的数据类型是什么:

df2.infer_objects().dtypesA int64 B float64 C bool D object dtype: object

'infer_obejects'可能看起来微不足道,但在有很多列时作用巨大。

15. Memory_usage

Memory_usage()返回每列使用的内存量(以字节为单位)。考虑下面的数据,其中每一列有一百万行。

df_large = pd.DataFrame({'A': np.random.randn(1000000), 'B': np.random.randint(100, size=1000000)})df_large.shape(1000000, 2)

每列占用的内存:

df_large.memory_usage()Index 128 A 8000000 B 8000000 dtype: int64

整个 dataframe 占用的内存(转换为以MB为单位):

df_large.memory_usage().sum() / (1024**2) #converting to megabytes15.2589111328125

16. Describe

describe函数计算数字列的基本统计信息,这些列包括计数、平均值、标准偏差、最小值和最大值、中值、第一个和第三个四分位数。因此,它提供了dataframe的统计摘要。


17. Merge

Merge()根据共同列中的值组合dataframe。考虑以下两个数据:


我们可以基于列中的共同值合并它们。设置合并条件的参数是"on"参数。


df1和df2是基于column_a列中的共同值进行合并的,merge函数的how参数允许以不同的方式组合dataframe,如:"inner"、"outer"、"left"、"right"等。

· inner:仅在on参数指定的列中具有相同值的行(如果未指定其它方式,则默认为 inner 方式)

· outer:全部列数据

· left:左一dataframe的所有列数据

· right:右一dataframe的所有列数据

18. Select_dtypes

Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。

df.select_dtypes(include='int64')


df.select_dtypes(exclude='int64')


19. Replace

顾名思义,它允许替换dataframe中的值。第一个参数是要替换的值,第二个参数是新值。

df.replace('A', 'A_1')


我们也可以在同一个字典中多次替换。

df.replace({'A':'A_1', 'B':'B_1'})


20. Applymap

Applymap用于将一个函数应用于dataframe中的所有元素。请注意,如果操作的矢量化版本可用,那么它应该优先于applymap。例如,如果我们想将每个元素乘以一个数字,我们不需要也不应该使用applymap函数。在这种情况下,简单的矢量化操作(例如df*4)要快得多。

然而,在某些情况下,我们可能无法选择矢量化操作。例如,我们可以使用pandas dataframes的style属性更改dataframe的样式。以下代码将负值的颜色设置为红色:

def color_negative_values(val): color = 'red' if val < 0 else 'black' return 'color: %s' % color

通过Applymap将上述代码应用到dataframe:

df3.style.applymap(color_negative_values)


作者:Soner Y?ld?r?m

deephub翻译组:Oliver Lee

相关推荐

苹果ios打包的ipa应用APP怎么不能安装?多种安装不上的原因排查

亲爱的同学们,非常高兴能和同学们一起探讨关于苹果应用安装失败的问题。作为一个开发者,我们很可能会遇到这样的情况:开发好一个应用,兴致勃勃地想把它运行到手机上去测试,结果发现安装失败了。而此时,定位问题...

Flutter 系列 - 环境搭建

#头条创作挑战赛#本文同步本人掘金平台的文章:https://juejin.cn/post/7002401225270362143Flutter作为火热的跨端工具包,在github上超过12...

XV6 操作系统入门系列-01-环境配置

xv6是一个用于教育目的的简单Unix操作系统,基于Unix第六版(Version6,V6)开发,运行在RISC-V处理器上。它由麻省理工学院(MIT)开发,用于操作系统课程(Ope...

速递|已获2000万美元融资,苹果前高管携Unblocked挑战代码理解“黑箱难题”

图片来源:Unblocked每位开发者都有自己独特的编码风格。尽管公司制定了最佳实践并编写了文档,开发者要理解他人的代码库仍非易事。为解决这一问题,DennisPilarinos开发了一款名为U...

C语言之编译器集合

C语言有多种不同的编译器,以下是常见的编译工具及其特点:一、主流C语言编译器1.GCC(GNUCompilerCollection)特点:开源、跨平台,支持多种语言(C、C++、Fortran...

Xamarin for Visual Studio v4.0正式发布

XamarinforVisualStudio让开发者可以在Windows上用VisualStudio开发原生iOS,Android和Windows应用程序。XamarinforVis...

macOS/iOS开发必备:Dylib文件的深度解析与安全防护

在macOS和iOS开发中,dylib文件是开发者们不可或缺的工具。它不仅能够实现代码复用、减少内存占用,还能支持程序的模块化更新。然而,随着技术的发展,dylib文件的安全性也面临着诸多挑战,例如被...

微软Islandwood项目启动:iOS应用轻松移植至Win10

IT之家讯5月1日消息,在昨天的Build2015开发者大会上,微软详细阐述了iOS应用程序移植到Win10平台的更多细节信息。现在,微软正式开启了ProjectIslandwood,该项目旨在搭...

macOS26中被库克删掉的启动台,有开源的项目实现了

这是一个第三方实现的,只实现了最基本的功能,包括:启动台应用程序文件夹打开应用删除应用为什么要做这个macOS26版本中,自带的启动台功能被库克老小子删除了,导致使用起来很不习惯。所以就自己做了...

环境配置劝退?Rust + Slint开发环境搭建全攻略,手把手教你避坑!

各位对科技充满好奇,又跃跃欲试想亲手写代码的朋友们!是不是每次下定决心要学习一门新语言、尝试一个新框架时,都会被“环境配置”这第一道坎儿给劝退?下载一堆软件,安装各种工具,然后面对一堆看不懂的错误提示...

MyEclipse移动开发教程:构建可分发的PhoneGap应用程序

本教程将用PhoneGap远程构建服务(remotebuildservices)去构建一个PhoneGap应用程序。当然,你也可以在本地构建PhoneGap应用程序。需要多说一句的是,Phone...

Android和iOS应用可以快速移植到Win10

|责编:刘菲菲在今天凌晨的Build2015开发者大会上,微软宣布所有Android和iOS应用,都可以通过简单的修改代码,直接生成适用于Win10的应用。也就是说,开发者们不需要学习更多内容,就...

Injection for Xcode:成吨的提高开发效率

本文为投稿文章,作者:@没故事的卓同学直接放demo演示动图:我很久以前就希望有这么一种功能,直接修改某行代码,F5一下就能刷新这个实例,而不用重写build整个项目。靠夭,我不是在说前端!没想居然有...

抖音品质建设 - iOS启动优化《原理篇》

前言启动是App给用户的第一印象,启动越慢用户流失的概率就越高,良好的启动速度是用户体验不可缺少的一环。启动优化涉及到的知识点非常多面也很广,一篇文章难以包含全部,所以拆分成两部分:原理和实践。本...

蓝鸥郑州iOS培训老师分享的iOS支付知识

最近常用朋友问iOS支付方面的问题,郑州iOS培训老师就和大家分享一些关于iOS支付方面的知识,希望对大家有所帮助。支付宝iOS使用支付宝进行一个完整的支付功能,大致有以下步骤:1>先与支付宝...