抖音品质建设 - iOS启动优化《原理篇》
liuian 2025-08-05 19:30 47 浏览
前言
启动是 App 给用户的第一印象,启动越慢用户流失的概率就越高,良好的启动速度是用户体验不可缺少的一环。启动优化涉及到的知识点非常多面也很广,一篇文章难以包含全部,所以拆分成两部分:原理和实践。
本文从基础知识出发,先回顾一些核心概念,为后续章节做铺垫;接下来介绍 IPA 构建的基本流程,以及这个流程里可用于启动优化的点;最后大篇幅讲解 dyld3 的启动 pipeline,因为启动优化的重点还在运行时。
基本概念
启动的定义
启动有两种定义:
- 广义:点击图标到首页数据加载完毕
- 狭义:点击图标到 Launch Image 完全消失第一帧
不同产品的业务形态不一样,对于抖音来说,首页的数据加载完成就是视频的第一帧播放;对其他首页是静态的 App 来说,Launch Image 消失就是首页数据加载完成。由于标准很难对齐,所以我们一般使用狭义的启动定义:即启动终点为启动图完全消失的第一帧。
以抖音为例,用户感受到的启动时间:
Tips:启动最佳时间是 400ms 以内,因为启动动画时长是 400ms。
这是从用户感知维度定义启动,那么代码上如何定义启动呢?Apple 在 MetricKit 中给出了官方计算方式:
- 起点:进程创建的时间
- 终点:第一个CA::Transaction::commit()
Tips:CATransaction 是 Core Animation 提供的一种事务机制,把一组 UI 上的修改打包,一起发给 Render Server 渲染。
启动的种类
根据场景的不同,启动可以分为三种:冷启动,热启动和回前台。
- 冷启动:系统里没有任何进程的缓存信息,典型的是重启手机后直接启动 App
- 热启动:如果把 App 进程杀了,然后立刻重新启动,这次启动就是热启动,因为进程缓存还在
- 回前台:大多数时候不会被定义为启动,因为此时 App 仍然活着,只不过处于 suspended 状态
那么,线上用户的冷启动多还是热启动多呢?
答案是和产品形态有关系,打开频次越高,热启动比例就越高。
Mach-O
Mach-O 是 iOS 可执行文件的格式,典型的 Mach-O 是主二进制和动态库。Mach-O 可以分为三部分:
- Header
- Load Commands
- Data
Header 的最开始是 Magic Number,表示这是一个 Mach-O 文件,除此之外还包含一些 Flags,这些 flags 会影响 Mach-O 的解析。
Load Commands 存储 Mach-O 的布局信息,比如 Segment command 和 Data 中的 Segment/Section 是一一对应的。除了布局信息之外,还包含了依赖的动态库等启动 App 需要的信息。
Data 部分包含了实际的代码和数据,Data 被分割成很多个 Segment,每个 Segment 又被划分成很多个 Section,分别存放不同类型的数据。
标准的三个 Segment 是 TEXT,DATA,LINKEDIT,也支持自定义:
- TEXT,代码段,只读可执行,存储函数的二进制代码(__text),常量字符串(__cstring),Objective C 的类/方法名等信息
- DATA,数据段,读写,存储 Objective C 的字符串(__cfstring),以及运行时的元数据:class/protocol/method…
- LINKEDIT,启动 App 需要的信息,如 bind & rebase 的地址,代码签名,符号表…
dyld
dyld 是启动的辅助程序,是 in-process 的,即启动的时候会把 dyld 加载到进程的地址空间里,然后把后续的启动过程交给 dyld。dyld 主要有两个版本:dyld2 和 dyld3。
dyld2 是从 iOS 3.1 引入,一直持续到 iOS 12。dyld2 有个比较大的优化是dyld shared cache,什么是 shared cache 呢?
- shared cache 就是把系统库(UIKit 等)合成一个大的文件,提高加载性能的缓存文件。
iOS 13 开始 Apple 对三方 App 启用了 dyld3,dyld3 的最重要的特性就是启动闭包,闭包里包含了启动所需要的缓存信息,从而提高启动速度。
虚拟内存
内存可以分为虚拟内存和物理内存,其中物理内存是实际占用的内存,虚拟内存是在物理内存之上建立的一层逻辑地址,保证内存访问安全的同时为应用提供了连续的地址空间。
物理内存和虚拟内存以页为单位映射,但这个映射关系不是一一对应的:一页物理内存可能对应多页虚拟内存;一页虚拟内存也可能不占用物理内存。
iPhone 6s 开始,物理内存的 Page 大小是 16K,6 和之前的设备都是 4K,这是 iPhone 6 相比 6s 启动速度断崖式下降的原因之一。
mmap
mmap 的全称是 memory map,是一种内存映射技术,可以把文件映射到虚拟内存的地址空间里,这样就可以像直接操作内存那样来读写文件。当读取虚拟内存,其对应的文件内容在物理内存中不存在的时候,会触发一个事件:File Backed Page In,把对应的文件内容读入物理内存。
启动的时候,Mach-O 就是通过 mmap 映射到虚拟内存里的(如下图)。下图中部分页被标记为 zero fill,是因为全局变量的初始值往往都是 0,那么这些 0 就没必要存储在二进制里,增加文件大小。操作系统会识别出这些页,在 Page In 之后对其置为 0,这个行为叫做 zero fill。
Page In
启动的路径上会触发很多次 Page In,其实也比较容易理解,因为启动的会读写二进制中的很多内容。Page In 会占去启动耗时的很大一部分,我们来看看单个 Page In 的过程:
- MMU 找到空闲的物理内存页面
- 触发磁盘 IO,把数据读入物理内存
- 如果是 TEXT 段的页,要进行解密
- 对解密后的页,进行签名验证
其中解密是大头,IO 其次。
为什么要解密呢?因为 iTunes Connect 会对上传 Mach-O 的 TEXT 段进行加密,防止 IPA 下载下来就直接可以看到代码。这也就是为什么逆向里会有个概念叫做“砸壳”,砸的就是这一层 TEXT 段加密。iOS 13 对这个过程进行了优化,Page In 的时候不需要解密了。
二进制重排
既然 Page In 耗时,有没有什么办法优化呢?启动具有局部性特征,即只有少部分函数在启动的时候用到,这些函数在二进制中的分布是零散的,所以 Page In 读入的数据利用率并不高。如果我们可以把启动用到的函数排列到二进制的连续区间,那么就可以减少 Page In 的次数,从而优化启动时间:
以下图为例,方法 1 和方法 3 是启动的时候用到的,为了执行对应的代码,就需要两次 Page In。假如我们把方法 1 和 3 排列到一起,那么只需要一次 Page In,从而提升启动速度。
链接器 ld 有个参数-order_file 支持按照符号的方式排列二进制。获取启动时候用到的符号的有很多种方式,感兴趣的同学可以看看抖音之前的文章:基于二进制文件重排的解决方案 APP 启动速度提升超 15%。
IPA 构建
pipeline
既然要构建,那么必然会有一些地方去定义如何构建,对应 Xcode 中的两个配置项:
- Build Phase:以 Target 为维度定义了构建的流程。可以在 Build Phase 中插入脚本,来做一些定制化的构建,比如 CocoaPod 的拷贝资源就是通过脚本的方式完成的。
- Build Settings:配置编译和链接相关的参数。特别要提到的是 other link flags 和 other c flags,因为编译和链接的参数非常多,有些需要手动在这里配置。很多项目用的 CocoaPod 做的组件化,这时候编译选项在对应的.xcconfig 文件里。
以单 Target 为例,我们来看下构建流程:
- 源文件(.m/.c/.swift 等)是单独编译的,输出对应的目标文件(.o)
- 目标文件和静态库/动态库一起,链接出最后的 Mach-O
- Mach-O 会被裁剪,去掉一些不必要的信息
- 资源文件如 storyboard,asset 也会编译,编译后加载速度会变快
- Mach-O 和资源文件一起,打包出最后的.app
- 对.app 签名,防篡改
编译
编译器可以分为两大部分:前端和后端,二者以 IR(中间代码)作为媒介。这样前后端分离,使得前后端可以独立的变化,互不影响。C 语言家族的前端是 clang,swift 的前端是 swiftc,二者的后端都是 llvm。
- 前端负责预处理,词法语法分析,生成 IR
- 后端基于 IR 做优化,生成机器码
那么如何利用编译优化启动速度呢?
代码数量会影响启动速度,为了提升启动速度,我们可以把一些无用代码下掉。那怎么统计哪些代码没有用到呢?可以利用 LLVM 插桩来实现。
LLVM 的代码优化流程是一个一个 Pass,由于 LLVM 是开源的,我们可以添加一个自定义的 Pass,在函数的头部插入一些代码,这些代码会记录这个函数被调用了,然后把统计到的数据上传分析,就可以知道哪些代码是用不到的了 。
Facebook 给 LLVM 提的order_file的 feature 就是实现了类似的插桩。
链接
经过编译后,我们有很多个目标文件,接着这些目标文件会和静态库,动态库一起,链接出一个 Mach-O。链接的过程并不产生新的代码,只会做一些移动和补丁。
- tbd 的全称是 text-based stub library,是因为链接的过程中只需要符号就可以了,所以 Xcode 6 开始,像 UIKit 等系统库就不提供完整的 Mach-O,而是提供一个只包含符号等信息的 tbd 文件。
举一个基于链接优化启动速度的例子:
最开始讲解 Page In 的时候,我们提到 TEXT 段的页解密很耗时,有没有办法优化呢?
可以通过 ld 的-rename_section,把 TEXT 段中的内容,比如字符串移动到其他的段(启动路径上难免会读很多字符串),从而规避这个解密的耗时。
抖音的重命名方案:
"-Wl,-rename_section,__TEXT,__cstring,__RODATA,__cstring",
"-Wl,-rename_section,__TEXT,__const,__RODATA,__const",
"-Wl,-rename_section,__TEXT,__gcc_except_tab,__RODATA,__gcc_except_tab",
"-Wl,-rename_section,__TEXT,__objc_methname,__RODATA,__objc_methname",
"-Wl,-rename_section,__TEXT,__objc_classname,__RODATA,__objc_classname",
"-Wl,-rename_section,__TEXT,__objc_methtype,__RODATA,__objc_methtype"裁剪
编译完 Mach-O 之后会进行裁剪(strip),是因为里面有些信息,如调试符号,是不需要带到线上去的。裁剪有多种级别,一般的配置如下:
- All Symbols,主二进制
- Non-Global Symbols,动态库
- Debugging Symbols,二方静态库
为什么二方库在出静态库的时候要选择 Debugging Symbols 呢?是因为像 order_file 等链接期间的优化是基于符号的,如果把符号裁剪掉,那么这些优化也就不会生效了。
签名 & 上传
裁剪完二进制后,会和编译好的资源文件一起打包成.app 文件,接着对这个文件进行签名。签名的作用是保证文件内容不多不少,没有被篡改过。接着会把包上传到 iTunes Connect,上传后会对__TEXT段加密,加密会减弱 IPA 的压缩效果,增加包大小,也会降低启动速度 (iOS 13 优化了加密过程,不会对包大小和启动耗时有影响)。
dyld3 启动流程
Apple 在 iOS 13 上对第三方 App 启用了 dyld3,官方数据显示,过去四年新发布的设备中有 93%的设备是 iOS 13,所以我们重点看下 dyld3 的启动流程。
Before dyld
用户点击图标之后,会发送一个系统调用 execve 到内核,内核创建进程。接着会把主二进制 mmap 进来,读取 load command 中的 LC_LOAD_DYLINKER,找到 dyld 的的路径。然后 mmap dyld 到虚拟内存,找到 dyld 的入口函数_dyld_start,把 PC 寄存器设置成_dyld_start,接下来启动流程交给了 dyld。
注意这个过程都是在内核态完成的,这里提到了 PC 寄存器,PC 寄存器存储了下一条指令的地址,程序的执行就是不断修改和读取 PC 寄存器来完成的。
dyld
创建启动闭包
dyld 会首先创建启动闭包,闭包是一个缓存,用来提升启动速度的。既然是缓存,那么必然不是每次启动都创建的,只有在重启手机或者更新/下载 App 的第一次启动才会创建。闭包存储在沙盒的 tmp/com.apple.dyld 目录,清理缓存的时候切记不要清理这个目录。
闭包是怎么提升启动速度的呢?我们先来看一下闭包里都有什么内容:
- dependends,依赖动态库列表
- fixup:bind & rebase 的地址
- initializer-order:初始化调用顺序
- optimizeObjc: Objective C 的元数据
- 其他:main entry, uuid…
动态库的依赖是树状的结构,初始化的调用顺序是先调用树的叶子结点,然后一层层向上,最先调用的是 libSystem,因为他是所有依赖的源头。
为什么闭包能提高启动速度呢?
因为这些信息是每次启动都需要的,把信息存储到一个缓存文件就能避免每次都解析,尤其是 Objective C 的运行时数据(Class/Method...)解析非常慢。
fixup
有了闭包之后,就可以用闭包启动 App 了。这时候很多动态库还没有加载进来,会首先对这些动态库 mmap 加载到虚拟内存里。接着会对每个 Mach-O 做 fixup,包括 Rebase 和 Bind。
- Rebase:修复内部指针。这是因为 Mach-O 在 mmap 到虚拟内存的时候,起始地址会有一个随机的偏移量 slide,需要把内部的指针指向加上这个 slide。
- Bind:修复外部指针。这个比较好理解,因为像 printf 等外部函数,只有运行时才知道它的地址是什么,bind 就是把指针指向这个地址。
举个例子:一个 Objective C 字符串@"1234",编译到最后的二进制的时候是会存储在两个 section 里的
- __TEXT,__cstring,存储实际的字符串"1234"
- __DATA,__cfstring,存储 Objective C 字符串的元数据,每个元数据占用 32Byte,里面有两个指针:内部指针,指向__TEXT,__cstring中字符串的位置;外部指针 isa,指向类对象的,这就是为什么可以对 Objective C 的字符串字面量发消息的原因。
如下图,编译的时候,字符串 1234 在__cstring的 0x10 处,所以 DATA 段的指针指向 0x10。但是 mmap 之后有一个偏移量 slide=0x1000,这时候字符串在运行时的地址就是 0x1010,那么 DATA 段的指针指向就不对了。Rebase 的过程就是把指针从 0x10,加上 slide 变成 0x1010。运行时类对象的地址已经知道了,bind 就是把 isa 指向实际的内存地址。
LibSystem Initializer
Bind & Rebase 之后,首先会执行 LibSystem 的 Initializer,做一些最基本的初始化:
- 初始化 libdispatch
- 初始化 objc runtime,注册 sel,加载 category
注意这里没有初始化 objc 的类方法等信息,是因为启动闭包的缓存数据已经包含了 optimizeObjc。
Load & Static Initializer
接下来会进行 main 函数之前的一些初始化,主要包括+load 和 static initializer。这两类初始化函数都有个特点:调用顺序不确定,和对应文件的链接顺序有关系。那么就会存在一个隐藏的坑:有些注册逻辑在+load 里,对应会有一些地方读取这些注册的数据,如果在+load 中读取,很有可能读取的时候还没有注册。
那么,如何找到代码里有哪些 load 和 static initializer 呢?
在 Build Settings 里可以配置 write linkmap,这样在生成的 linkmap 文件里就可以找到有哪些文件里包含 load 或者 static initializer:
- __mod_init_func,static initializer
- __objc_nlclslist,实现+load 的类
- __objc_nlcatlist,实现+load 的 Category
load 举例
如果+load 方法里的内容很简单,会影响启动时间么?比如这样的一个+load 方法?
+ (void)load
{
printf("1234");
}
编译完了之后,这个函数会在二进制中的 TEXT 两个段存在:__text存函数二进制,cstring存储字符串 1234。为了执行函数,首先要访问__text触发一次 Page In 读入物理内存,为了打印字符串,要访问__cstring,还会触发一次 Page In。
- 为了执行这个简单的函数,系统要额外付出两次 Page In 的代价,所以 load 函数多了,page in 会成为启动性能的瓶颈。
static initializer 产生的条件
静态初始化是从哪来的呢?以下几种代码会导致静态初始化
- __attribute__((constructor))
- static class object
- static object in global namespace
注意,并不是所有的 static 变量都会产生静态初始化,编译器很智能,对于在编译期间就能确定的变量是会直接 inline。
//会产生静态初始化
class Demo{
static const std::string var_1;
};
const std::string var_2 = "1234";
static Logger logger;
//不会产生静态初始化
static const int var_3 = 4;
static const char * var_4 = "1234";
std::string 会合成 static initializer 是因为初始化的时候必须执行构造函数,这时候编译器就不知道怎么做了,只能延迟到运行时~
UIKit Init
+load 和 static initializer 执行完毕之后,dyld 会把启动流程交给 App,开始执行 main 函数。main 函数里要做的最重要的事情就是初始化 UIKit。UIKit 主要会做两个大的初始化:
- 初始化 UIApplication
- 启动主线程的 Runloop
由于主线程的 dispatch_async 是基于 runloop 的,所以在+load 里如果调用了 dispatch_async 会在这个阶段执行。
Runloop
线程在执行完代码就会退出,很明显主线程是不能退出的,那么就需要一种机制:事件来的时候执行任务,否则让线程休眠,Runloop 就是实现这个功能的。
Runloop 本质上是一个 While 循环,在图中橙色部分的 mach_msg_trap 就是触发一个系统调用,让线程休眠,等待事件到来,唤醒 Runloop,继续执行这个 while 循环。
Runloop 主要处理几种任务:Source0,Source1,Timer,GCD MainQueue,Block。在循环的合适时机,会以 Observer 的方式通知外部执行到了哪里。
那么,Runloop 与启动又有什么关系呢?
- App 的 LifeCycle 方法是基于 Runloop 的 Source0 的
- 首帧渲染是基于 Runloop Block 的
Runloop 在启动上主要有几点应用:
- 精准统计启动时间
- 找到一个时机,在启动结束去执行一些预热任务
- 利用 Runloop 打散耗时的启动预热任务
Tips: 会有一些逻辑要在启动之后 delay 一小段时间再回到主线程上执行,对于性能较差的设备,主线程 Runloop 可能一直处于忙的状态,所以这个 delay 的任务并不一定能按时执行。
AppLifeCycle
UIKit 初始化之后,就进入了我们熟悉的 UIApplicationDelegate 回调了,在这些会调里去做一些业务上的初始化:
- willFinishLaunch
- didFinishLaunch
- didFinishLaunchNotification
要特别提一下 didFinishLaunchNotification,是因为大家在埋点的时候通常会忽略还有这个通知的存在,导致把这部分时间算到 UI 渲染里。
First Frame Render
一般会用 Root Controller 的 viewDidApper 作为渲染的终点,但其实这时候首帧已经渲染完成一小段时间了,Apple 在 MetricsKit 里对启动终点定义是第一个CA::Transaction::commit()。
什么是 CATransaction 呢?我们先来看一下渲染的大致流程
iOS 的渲染是在一个单独的进程 RenderServer 做的,App 会把 Render Tree 编码打包给 RenderServer,RenderServer 再调用渲染框架(Metal/OpenGL ES)来生成 bitmap,放到帧缓冲区里,硬件根据时钟信号读取帧缓冲区内容,完成屏幕刷新。CATransaction 就是把一组 UI 上的修改,合并成一个事务,通过 commit 提交。
渲染可以分为四个步骤
- Layout(布局),源头是 Root Layer 调用[CALayer layoutSubLayers],这时候 UIViewController 的 viewDidLoad 和 LayoutSubViews 会调用,autolayout 也是在这一步生效
- Display(绘制),源头是 Root Layer 调用[CALayer display],如果 View 实现了 drawRect 方法,会在这个阶段调用
- Prepare(准备),这个过程中会完成图片的解码
- Commit(提交),打包 Render Tree 通过 XPC 的方式发给 Render Server
启动 Pipeline
详细回顾下整个启动过程,以及各个阶段耗时的影响因素:
- 点击图标,创建进程
- mmap 主二进制,找到 dyld 的路径
- mmap dyld,把入口地址设为_dyld_start
- 重启手机/更新/下载 App 的第一次启动,会创建启动闭包
- 把没有加载的动态库 mmap 进来,动态库的数量会影响这个阶段
- 对每个二进制做 bind 和 rebase,主要耗时在 Page In,影响 Page In 数量的是 objc 的元数据
- 初始化 objc 的 runtime,由于闭包已经初始化了大部分,这里只会注册 sel 和装载 category
- +load 和静态初始化被调用,除了方法本身耗时,这里还会引起大量 Page In
- 初始化 UIApplication,启动 Main Runloop
- 执行 will/didFinishLaunch,这里主要是业务代码耗时
- Layout,viewDidLoad 和 Layoutsubviews 会在这里调用,Autolayout 太多会影响这部分时间
- Display,drawRect 会调用
- Prepare,图片解码发生在这一步
- Commit,首帧渲染数据打包发给 RenderServer,启动结束
dyld2
dyld2 和 dyld3 的主要区别就是没有启动闭包,就导致每次启动都要:
- 解析动态库的依赖关系
- 解析 LINKEDIT,找到 bind & rebase 的指针地址,找到 bind 符号的地址
- 注册 objc 的 Class/Method 等元数据,对大型工程来说,这部分耗时会很长
总结
本文回顾了 Mach-O,虚拟内存,mmap,Page In,Runloop 等基础概念,接下来介绍了 IPA 的构建流程,以及两个典型的利用编译器来优化启动的方案,最后详细的讲解了 dyld3 的启动 pipeline。
之所以花这么大篇幅讲原理,是因为任何优化都一样,只有深入理解系统运作的原理,才能找到性能的瓶颈,下一篇我们会介绍下如何利用这些原理解决实际问题。
加入我们
我们是负责抖音客户端基础能力研发和新技术探索的团队。我们在工程/业务架构,研发工具,编译系统等方向深耕,支撑业务快速迭代的同时,保证超大规模团队的研发效能和工程质量。在性能/稳定性等方面不断探索,努力为全球数亿用户提供最极致的基础体验。
如果你对技术充满热情,欢迎加入抖音基础技术团队,让我们共建亿级全球化 App。目前我们在上海、北京、杭州、深圳均有招聘需求,内推可以联系邮箱:tech@bytedance.com ;邮件标题:姓名 - 工作年限 - 抖音 - 基础技术 - iOS/Android。
更多分享
iOS性能优化实践:头条抖音如何实现OOM崩溃率下降50%+
欢迎关注「 字节跳动技术团队 」
简历投递联系邮箱「 tech@bytedance.com 」
相关推荐
-
- 驱动网卡(怎么从新驱动网卡)
-
网卡一般是指为电脑主机提供有线无线网络功能的适配器。而网卡驱动指的就是电脑连接识别这些网卡型号的桥梁。网卡只有打上了网卡驱动才能正常使用。并不是说所有的网卡一插到电脑上面就能进行数据传输了,他都需要里面芯片组的驱动文件才能支持他进行数据传输...
-
2026-01-30 00:37 liuian
- win10更新助手装系统(微软win10更新助手)
-
1、点击首页“系统升级”的按钮,给出弹框,告诉用户需要上传IMEI码才能使用升级服务。同时给出同意和取消按钮。华为手机助手2、点击同意,则进入到“系统升级”功能华为手机助手华为手机助手3、在检测界面,...
- windows11专业版密钥最新(windows11专业版激活码永久)
-
Windows11专业版的正版密钥,我们是对windows的激活所必备的工具。该密钥我们可以通过微软商城或者通过计算机的硬件供应商去购买获得。获得了windows11专业版的正版密钥后,我...
-
- 手机删过的软件恢复(手机删除过的软件怎么恢复)
-
操作步骤:1、首先,我们需要先打开手机。然后在许多图标中找到带有[文件管理]文本的图标,然后单击“文件管理”进入页面。2、进入页面后,我们将在顶部看到一行文本:手机,最新信息,文档,视频,图片,音乐,收藏,最后是我们正在寻找的[更多],单击...
-
2026-01-29 23:55 liuian
- 一键ghost手动备份系统步骤(一键ghost 备份)
-
步骤1、首先把装有一键GHOST装系统的U盘插在电脑上,然后打开电脑马上按F2或DEL键入BIOS界面,然后就选择BOOT打USDHDD模式选择好,然后按F10键保存,电脑就会马上重启。 步骤...
- 怎么创建局域网(怎么创建局域网打游戏)
-
1、购买路由器一台。进入路由器把dhcp功能打开 2、购买一台交换机。从路由器lan端口拉出一条网线查到交换机的任意一个端口上。 3、两台以上电脑。从交换机任意端口拉出网线插到电脑上(电脑设置...
- 精灵驱动器官方下载(精灵驱动手机版下载)
-
是的。驱动精灵是一款集驱动管理和硬件检测于一体的、专业级的驱动管理和维护工具。驱动精灵为用户提供驱动备份、恢复、安装、删除、在线更新等实用功能。1、全新驱动精灵2012引擎,大幅提升硬件和驱动辨识能力...
- 一键还原系统步骤(一键还原系统有哪些)
-
1、首先需要下载安装一下Windows一键还原程序,在安装程序窗口中,点击“下一步”,弹出“用户许可协议”窗口,选择“我同意该许可协议的条款”,并点击“下一步”。 2、在弹出的“准备安装”窗口中,可...
- 电脑加速器哪个好(电脑加速器哪款好)
-
我认为pp加速器最好用,飞速土豆太懒,急速酷六根本不工作。pp加速器什么网页都加速,太任劳任怨了!以上是个人观点,具体性能请自己试。ps:我家电脑性能很好。迅游加速盒子是可以加速电脑的。因为有过之...
- 任何u盘都可以做启动盘吗(u盘必须做成启动盘才能装系统吗)
-
是的,需要注意,U盘的大小要在4G以上,最好是8G以上,因为启动盘里面需要装系统,内存小的话,不能用来安装系统。内存卡或者U盘或者移动硬盘都可以用来做启动盘安装系统。普通的U盘就可以,不过最好U盘...
- u盘怎么恢复文件(u盘文件恢复的方法)
-
开360安全卫士,点击上面的“功能大全”。点击文件恢复然后点击“数据”下的“文件恢复”功能。选择驱动接着选择需要恢复的驱动,选择接入的U盘。点击开始扫描选好就点击中间的“开始扫描”,开始扫描U盘数据。...
- 系统虚拟内存太低怎么办(系统虚拟内存占用过高什么原因)
-
1.检查系统虚拟内存使用情况,如果发现有大量的空闲内存,可以尝试释放一些不必要的进程,以释放内存空间。2.如果系统虚拟内存使用率较高,可以尝试增加系统虚拟内存的大小,以便更多的应用程序可以使用更多...
-
- 剪贴板权限设置方法(剪贴板访问权限)
-
1、首先打开iphone手机,触碰并按住单词或图像直到显示选择选项。2、其次,然后选取“拷贝”或“剪贴板”。3、勾选需要的“权限”,最后选择开启,即可完成苹果剪贴板权限设置。仅参考1.打开苹果手机设置按钮,点击【通用】。2.点击【键盘】,再...
-
2026-01-29 21:37 liuian
- 平板系统重装大师(平板重装win系统)
-
如果你的平板开不了机,但可以连接上电脑,那就能好办,楼主下载安装个平板刷机王到你的个人电脑上,然后连接你的平板,平板刷机王会自动识别你的平板,平板刷机王上有你平板的我刷机包,楼主点击下载一个,下载完成...
- 联想官网售后服务网点(联想官网售后服务热线)
-
联想3c服务中心是联想旗下的官方售后,是基于互联网O2O模式开发的全新服务平台。可以为终端用户提供多品牌手机、电脑以及其他3C类产品的维修、保养和保险服务。根据客户需求层次,联想服务针对个人及家庭客户...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
