Flask 数据可视化(flask数据可视化分成两页)
liuian 2025-01-31 14:02 18 浏览
数据可视化是数据处理中的重要部分,前面我们了解了 Flask 的开发和部署,如何用 Flask 做数据可视化呢?今天我们来了解一下。
Python 语言极富表达力,并且拥有众多的数据分析库和框架,是数据分析的首选;
echarts,最初由百度团队开发,现在已独立成 Apache 旗下一款国际化产品,是基于 Web 的数据可视化框架,API 简单明了,应用极为广泛;
Python 和 echarts 的完美结合就是 pyecharts
pyecharts 简介
pyecharts 使得可以用 Python 语言,完成 echarts 中对图表的各种操作,并且让编写代码更便利
pyecharts 中的概念和 echarts 是想通的,对于刚接触的同学,无论从 pyecharts 还是 echarts 开始了解都可以
图表类
pyecharts 中的图表都是类,都继承自 Base 基类,构造函数接受一个 init_opts 参数,用于设置图表的属性
意下是常用 API 接口:
- add_js_func:将 js 脚本附加在图表 Html 中
- set_global_opts:设置图表属性
- render:渲染出图表的 Html 文件
- dump_options_with_quotes:将图表所有设置导出为 json,用于前后分离
全局配置
pyecharts 将图表中和数据无关的属性,集中在全局配置中,也就是这些配置是服务于整个图表的,比如 标题、图例、工具栏、数据提示框、区域缩放等,每种配置项,都是一个 BasicOpts 的子类,通过图标对象的 set_global_opts 方法设置,例如:
from pyecharts.charts import Bar
bar = Bar()
bar.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-基本示例",
subtitle="我是副标题",
pos_left= "center",
pos_top="top"),
legend_opts=opts.LegendOpts(
pos_top="60"
))
系列配置
系列(series)是很常见的名词。在 echarts 里,系列(series)是指:一组数值以及他们映射成的图。“系列”这个词原本可能来源于“一系列的数据”,而在 echarts 中取其扩展的概念,不仅表示数据,也表示数据映射成为的图。所以,一个 系列 包含的要素至少有:一组数值、图表类型(series.type)、以及其他的关于这些数据如何映射成图的参数。
pyecharts 系列配置 和 全局配置 类似,用于对图表中 系列 进行设置,比如设置 系列 样式、坐标系、颜色、形状、特殊点,以及等。
例如,柱状图上不显示标签:
from pyecharts.charts import Bar
bar = Bar()
bar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
pyecharts 安装
首先安装 pyecharts:
pip install pyecharts
安装完后,在 Python 交互式环境( REPL )中,可以查看版本信息:
>>> import pyecharts
>>> print(pyecharts.__version__)
1.7.0
Flask 集成
前面我们了解了 Flask 的开发,对于一个应用来说,需要有 视图函数 , 模板、和 路由,echarts 是一个前台框架,只要将页面做成模板,然后将数据写入模板就好,这样确实是可以做的,不过 pyecharts 已经处理了大部分工作,只要在 Python 中开发代码就好了。
pyecharts 和 Flask 集成,四种形式,分别是 模板渲染、前后分离、定时全集更新 和 增量数据更新
模板渲染
模板渲染是比较方便的,可以不用写前台页面,因为 pyecharts 已经定义了很多模板,以及模板宏,调用很方便。
第一步 下载 pyecharts 的模板
可以从 github 的 pyecharts 项目中获取,https://github.com/pyecharts/pyecharts
如果用 pip 安装的 pyecharts ,可以在安装环境中的模块目录下找到,即 Python home 中的 Lib/site-packages/pyecharts/render/templates
第二步 将模板放入项目目录下
在我们的 Flask 应用的目录的 templates 模板下,创建 pyecharts 目录,来存放复制的 pyecharts 模板。
这样可以避免与 Flask 应用中我们自建的模板混淆。
第三步 渲染图表
我们将业务逻辑写入都写在 Flask 启动脚本 app.py 中:
from flask import Flask # 引入 Flask
from jinja2 import Markup, Environment, FileSystemLoader
from pyecharts.globals import CurrentConfig
CurrentConfig.GLOBAL_ENV = Environment(loader=FileSystemLoader("./templates/pyecharts"))
from pyecharts import options as opts
from pyecharts.charts import Bar
app = Flask(__name__)
def bar_base() -> Bar: # -> 表示要返回的是类型
c = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.add_yaxis("商家B", [15, 25, 16, 55, 48, 8])
.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-基本示例",
subtitle="我是副标题"
)
)
)
return c
@app.route("/")
def index():
c = bar_base()
return Markup(c.render_embed())
- 首先引入 Flask、jinjia2 和 pyecharts
- 为全局变量设置 jinjia2 环境,指定模板路径为 /templates/pyecharts 即我们存放 pyecharts 模板的路径。这样不会影响 Flask 的默认模板路径
- 定义图表工厂方法,返回一个图表实例,图表实例支持点串联操作
- add_xaxis 添加 X 轴显示的项目
- add_yaxis 添加 Y 轴数据分类和数值,相当于分组,可以添加多个
- set_global_opts 设置图标的全局配置
- 视图函数中,用图表工厂方法 bar_base 创建一个图表实体,返回 render_embed 经过 jinjia2 的渲染结果
- render_embed 返回的是合成好的 html 可以直接返回给前台做展示
前后分离
模板渲染虽然方便,但是不透灵活,比如要修改已有页面,加上一个图表,这是可以考虑用前后分离的方式
前两步和 模板渲染 中的一样
第三步 创建前台页面
创建一个 html 文件 index.html,存放在 templates 文件夹下,内容和 echarts 一样,主要是需要引用 echarts 框架,和 jQuery 框架(其他的Ajax框架均可),定义显示图表的 Dom,最后在页面加载完成回调方法中,通过 ajax 请求后台数据,异步将获取到的图标数据设置到图表中:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>我的图表</title>
<script src="https://cdn.bootcss.com/jquery/3.0.0/jquery.min.js"></script>
<script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script>
</head>
<body>
<div id="bar" style="width:1000px; height:600px;"></div>
<script>
$(
function () {
var chart = echarts.init(document.getElementById('bar'), 'white', {renderer: 'canvas'});
$.ajax({
type: "GET",
url: "/barChart",
dataType: 'json',
success: function (result) {
chart.setOption(result);
}
});
}
)
</script>
</body>
</html>
第四步 编写后台相应方法
前台页面中定义了 ajax 请求路径是 barChart,我们就写一个处理该请求的视图方法:
@app.route("/barChart")
def bar_chart():
c = bar_base()
return c.dump_options_with_quotes()
- 定义图表的方式和 模板渲染一样
- 视图方法中,用工厂方法创建视图对象,返回 dump_options_with_quotes 的结果
- dump_options_with_quotes 将图标的配置集成为前台需要的格式,返回 JSON 数据
最后启动 Flask 应用,在 <localhost:5000> 就能看到效果
前后分离的方式更常用,可以让前台的展示发挥最大的优势,Flask 后台提供图表需要的数据和设置
定时全量更新
有很多场景需要实时更新图表内容,实现方式是将 前后分离 的方式,获取后台图标配置的请求写成定时调用的,将得到的图标数据通过 setOption 设置到图表对象中。
后台视图方法每次重新根据查询条件,获取新的数据,设置到图表对象中,再用 dump_options_with_quotes 将设置导出,返回给前台
定时增量更新
增量更新在数据监控的场景中很常用,实现方式和全量更新有些差别
首先需要得到一个图表的设置,这个和全量更新一样
然后将获取增量数据的方法作为定时的,在回调函数中,为图标设置增量数据,与全量更新不同的是只更新 系列数据,echarts 会处理好图表的变化,包括动画效果
前台获取增量数据并更新的方法:
function getDynamicData() {
$.ajax({
type: "GET",
url: "/lineDynamicData",
dataType: "json",
success: function (result) {
old_data.push([result.name, result.value]);
chart.setOption({
series: [{data: old_data}]
});
}
});
}
old_data 图表数据的应用:
old_data = chart.getOption().series[0].data;
如果需要同时将最早的数据清除掉,只需要将需要去除的数据从 old_data 中删除就行:
old_data.shift(); // 清楚最早的一个数据
后台数据处理
根据图表数据要求,每次前台请求增量数据时,将最新的数据返回
这里需要注意到是增量数据范围,即怎么确定增量数据
常用数据产生时间 或者 数据 id 作为增量条件,例如图表展示的是在线用户数变化曲线,在线用户数,会定时存放在库表中,每条记录都有个 id,每次请求增量数据时,将已经获取到数据的最大的 id 值作为请求参数,后台就可以获取该主键值后面的数据,作为增量数据。
渲染图片
在有些场景下,需要生成图表图片,Python 有很多图表处理工具,可以做图像生成。
对 echarts 来说,也有生成图片的功能,不过需要在浏览器中,pyecharts 作为 Python 和 echarts 的桥梁,支持后端生成图表图片。
pyecharts 提供了 selenium, phantomjs 和 pyppeteer 三种方式渲染图片,其原理是用无头浏览器,渲染图表页面后,用 echarts 生成图片功能,生成图片。
这里我们用 selenium 做演示
安装 snapshot-selenium
snapshot-selenium 是 pyecharts + selenium 渲染图片的扩展,selenium 需要配置 browser driver,推荐使用 Chrome 浏览器,可以开启 headless 模式,具体配置可参考 selenium-python 相关介绍。
使用
pyecharts 使用 make_snapshot 直接生成图片,支持生成图片相关的配置,如 echarts html 文件名,输出文件名,浏览器种类等:
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot
def bar_chart() -> Bar:
c = (
Bar()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-测试渲染图片"))
)
return c
make_snapshot(snapshot, bar_chart().render(), "bar0.png")
- 先引入 make_snapshot 和 snapshot
- 定义图表工厂方法
- 调用 make_snapshot 导出图片,第一个参数是渲染扩展工具,第二个是生成的 Html 文件路径,第三个参数是生成的图片文件路径
- 由于是通过无头浏览器中模拟的,图表复杂或者数据多时,渲染可能较慢,可以通过 make_snapshot 命名参数 delay 来设置等待时间,默认为 2 秒
总结
今天介绍了使用 pyecharts 实现数据可视化的方法,并描述了如何与 Flask 集成,以及几种生成图表的方式,可以尝试一下,以便做出更好玩更有用的 Flask 应用。
相关推荐
- Optional是个好东西,如果用错了就太可惜了
-
原文出处:https://xie.infoq.cn/article/e3d1f0f4f095397c44812a5be我们都知道,在Java8新增了一个类-Optional,主要是用来解决程...
- IDEA建议:不要在字段上使用@Autowire了!
-
在使用IDEA写Spring相关的项目的时候,在字段上使用@Autowired注解时,总是会有一个波浪线提示:Fieldinjectionisnotrecommended.纳尼?我天天用,咋...
- Spring源码|Spring实例Bean的方法
-
Spring实例Bean的方法,在AbstractAutowireCapableBeanFactory中的protectedBeanWrappercreateBeanInstance(String...
- Spring技巧:深入研究Java 14和SpringBoot
-
在本期文章中,我们将介绍Java14中的新特性及其在构建基于SpringBoot的应用程序中的应用。开始,我们需要使用Java的最新版本,也是最棒的版本,Java14,它现在还没有发布。预计将于2...
- Java开发200+个学习知识路线-史上最全(框架篇)
-
1.Spring框架深入SpringIOC容器:BeanFactory与ApplicationContextBean生命周期:实例化、属性填充、初始化、销毁依赖注入方式:构造器注入、Setter注...
- 年末将至,Java 开发者必须了解的 15 个Java 顶级开源项目
-
专注于Java领域优质技术,欢迎关注作者:SnailClimbStar的数量统计于2019-12-29。1.JavaGuideGuide哥大三开始维护的,目前算是纯Java类型项目中Sta...
- 字节跨平台框架 Lynx 开源:一个 Web 开发者的原生体验
-
最近各大厂都在开源自己的跨平台框架,前脚腾讯刚宣布计划四月开源基于Kotlin的跨平台框架「Kuikly」,后脚字节跳动旧开源了他们的跨平台框架「Lynx」,如果说Kuikly是一个面向...
- 我要狠狠的反驳“公司禁止使用Lombok”的观点
-
经常在其它各个地方在说公司禁止使用Lombok,我一直不明白为什么不让用,今天看到一篇文章列举了一下“缺点”,这里我只想狠狠地反驳,看到列举的理由我竟无言以对。原文如下:下面,结合我自己使用Lomb...
- SpringBoot Lombok使用详解:从入门到精通(注解最全)
-
一、Lombok概述与基础使用1.1Lombok是什么Lombok是一个Java库,它通过注解的方式自动生成Java代码(如getter、setter、toString等),从而减少样板代码的编写,...
- Java 8之后的那些新特性(六):记录类 Record Class
-
Java是一门面向对象的语言,而对于面向对象的语言中,一个众所周知的概念就是,对象是包含属性与行为的。比如HR系统中都会有雇员的概念,那雇员会有姓名,ID身份,性别等,这些我们称之为属性;而雇员同时肯...
- 为什么大厂要求安卓开发者掌握Kotlin和Jetpack?优雅草卓伊凡
-
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡一、Kotlin:Android开发的现代语言选择1.1Kotlin是什么?Kotlin是由...
- Kotlin这5招太绝了!码农秒变优雅艺术家!
-
Kotlin因其简洁性、空安全性和与Java的无缝互操作性而备受喜爱。虽然许多开发者熟悉协程、扩展函数和数据类等特性,但还有一些鲜为人知的特性可以让你的代码从仅仅能用变得真正优雅且异常简洁。让我们来看...
- 自行部署一款免费高颜值的IT资产管理系统-咖啡壶chemex
-
在运维时,ICT资产太多怎么办,还是用excel表格来管理?效率太低,也不好多人使用。在几个IT资产管理系统中选择比较中,最终在Snipe-IT和chemex间选择了chemex咖啡壶。Snip...
- PHP对接百度语音识别技术(php对接百度语音识别技术实验报告)
-
引言在目前的各种应用场景中,语音识别技术已经越来越常用,并且其应用场景正在不断扩大。百度提供的语音识别服务允许用户通过简单的接口调用,将语音内容转换为文本。本文将通过PHP语言集成百度的语音识别服务,...
- 知识付费系统功能全解析(知识付费项目怎么样)
-
开发知识付费系统需包含核心功能模块,确保内容变现、用户体验及运营管理需求。以下是完整功能架构:一、用户端功能注册登录:手机号/邮箱注册,第三方登录(微信、QQ)内容浏览:分类展示课程、文章、音频等付费...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)