5分钟了解Pandas的透视表
liuian 2025-01-12 16:25 17 浏览
Pandas 库是用于数据分析的流行 Python 包。 Pandas 中处理数据集时,结构将是二维的,由行和列组成,也称为dataframe。 然而,数据分析的一个重要部分是对这些数据进行分组、汇总、聚合和计算统计的过程。
Pandas 数据透视表提供了一个强大的工具来使用 python 执行这些分析技术。
如果你是excel用户,那么可能已经熟悉数据透视表的概念。 Pandas 数据透视表的工作方式与 Excel 等电子表格工具中的数据透视表非常相似。 数据透视表函数接受一个df,一些参数详细说明了您希望数据采用的形状,并且输出是以数据透视表的形式汇总数据。
在下面的文章中,我将通过代码示例简要介绍 Pandas 数据透视表工具。
数据
在本教程中,我将使用一个名为“autos”的数据集。 该数据集包含有关汽车的一系列特征,例如品牌、价格、马力和每公里油耗等。
数据可以从 openml 下载。 或者可以使用 scikit-learn API 将代码直接导入到代码中,如下所示。
import pandas as pd
import numpy as np
from sklearn.datasets import fetch_openml
X,y = fetch_openml("autos", version=1, as_frame=True, return_X_y=True)
data = X
data['target'] = y
透视表剖析
Pandas 数据透视表具有三个主要元素。 索引指定行级分组,列指定列级分组和值,这些值是您要汇总的数值。
用于创建上述数据透视表的代码如下所示。 在 pivot_table 函数中,我们指定要汇总的df,然后是值、索引和列的列名。 此外,我们指定了我们想要使用的计算类型,我们以计算平均值为例。
pivot = np.round(pd.pivot_table(data, values='price',
index='num-of-doors',
columns='fuel-type',
aggfunc=np.mean),2)
数据透视表可以是多级的。 我们可以使用多个索引和列级分组来创建更强大的数据集摘要。
pivot = np.round(pd.pivot_table(data, values='price',
index=['num-of-doors', 'body-style'],
columns=['fuel-type', 'fuel-system'],
aggfunc=np.mean,
fill_value=0),2)
可视化
Pandas 数据透视表可与 Pandas 绘图功能结合使用,以创建有用的数据可视化。
只需将 .plot() 添加到数据透视表代码的末尾即可创建数据图。 例如,下面的代码创建了一个条形图,显示了按品牌和门数划分的平均汽车价格。
np.round(pd.pivot_table(data, values='price',
index=['make'],
columns=['num-of-doors'],
aggfunc=np.mean,
fill_value=0),2).plot.barh(figsize=(10,7),
title='Mean car price by make and number of doors')
计算和统计
数据透视表函数中的 aggfunc 参数可以进行一项或多项标准计算。
以下代码计算body-style和num-of-doors的平均价格和中位数价格。
np.round(pd.pivot_table(data, values='price',
index=['body-style'],
columns=['num-of-doors'],
aggfunc=[np.mean, np.median],
fill_value=0),2)
要将总计添加到列和行,可以简单地添加参数 margins=True 实现并且您可以使用 margins_name 为总计指定一个名称。
np.round(pd.pivot_table(data, values='price',
index=['body-style'],
columns=['num-of-doors'],
aggfunc=[np.sum],
fill_value=0,
margins=True, margins_name='Total'),2)
样式
在汇总数据时,样式很重要。 我们希望确保数据透视表提供的模式和见解易于阅读和理解。 在本文前面部分使用的数据透视表中,应用了很少的样式,因此,这些表不容易理解或没有视觉上的重点。
我们可以使用另一种 Pandas 方法,称为样式方法,使表格看起来更漂亮,更容易从中得出见解。 下面的代码为此数据透视表中使用的每个值添加了适当的格式和度量单位。 现在更容易区分这两列并理解数据告诉您的内容。
pivot = np.round(pd.pivot_table(data, values=['price', 'horsepower'],
index=['make'],
aggfunc=np.mean,
fill_value=0),2)
pivot.style.format({'price':'${0:,.0f}',
'horsepower':'{0:,.0f}hp'})
我们可以使用styler组合不同的格式,并使用 Pandas 内置样式以一种好的方式汇总数据。 在下面显示的代码和数据透视表中,我们按价格从高到低对汽车制造商进行了排序,为数字添加了适当的格式,并添加了一个覆盖两列值的条形图。 这使得很容易得出结论,例如哪种品牌的汽车最贵,以及马力与每种品牌的价格之间的关系。
pivot = np.round(pd.pivot_table(data, values=['price', 'horsepower'],
index=['make'],
aggfunc=np.mean,
fill_value=0),2)
pivot = pivot.reindex(pivot['price'].sort_values(ascending=False).index).nlargest(10, 'price')
pivot.style.format({'price':'${0:,.0f}',
'horsepower':'{0:,.0f}hp'}).bar(color='#d65f5f')
总结
数据透视表自 90 年代初开始使用,微软于 1994 年为著名的 Excel 版本“数据透视表”申请了专利。它们今天仍在广泛使用,因为它们是分析数据的强大工具。 Pandas 数据透视表将这个工具从电子表格中带到了 python 用户的手中。
本指南简要介绍了 Pandas 中数据透视表工具的使用。 它旨在为初学者提供一个快速教程来启动和运行,但我建议深入研究 Pandas 文档,其中提供了有关此功能的更深入指南。
作者:Rebecca Vickery
相关推荐
- vue怎么和后端php配合
-
Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...
- Ansible最佳实践之 AWX 使用 Ansible 与 API 通信
-
#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...
- PHP8.3 错误处理革命:Exception 与 Error 全面升级
-
亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...
- 使用 mix/vega + mix/db 进行现代化的原生 PHP 开发
-
最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...
- 15 个非常好用的 JSON 工具
-
JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...
- php8环境原生实现rpc
-
大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...
- 「PHP编程」如何搭建私有Composer包仓库?
-
在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...
- WAF-Bypass之SQL注入绕过思路总结
-
过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...
- 【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant
-
JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...
- 技术分享 | 利用PHAR协议进行PHP反序列化攻击
-
PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...
- php进阶到架构之swoole系列教程(一)windows安装swoole
-
目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...
- go 和 php 性能如何进行对比?
-
PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...
- Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境
-
CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...
- json和jsonp区别
-
JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...
- web后端正确的返回JSON
-
在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)