百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

liuian 2025-01-12 16:25 34 浏览

在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们应用到我们的数据中。

合并DF

Pandas 使用 .merge() 方法来执行合并。

import pandas as pd 

# a dictionary to convert to a dataframe 
data1 = {'identification': ['a', 'b', 'c', 'd'], 
'Customer_Name':['King', 'West', 'Adams', 'Mercy'], 'Category':['furniture', 'Office Supplies', 'Technology', 'R_materials'],} 

# our second dictionary to convert to a dataframe 
data2 = {'identification': ['a', 'b', 'c', 'd'], 
'Class':['First_Class', 'Second_Class', 'Same_day', 'Standard Class'], 
'Age':[60, 30, 40, 50]} 

# Convert the dictionary into DataFrame 
df1 = pd.DataFrame(data1) 
df2 = pd.DataFrame(data2)

运行我们的代码后,有两个 DataFrame,如下所示。

identification Customer_Name Category 
0 a King furniture 
1 b West Office Supplies 
2 c Adams Technology 
3 d Mercy R_materials 
identification Class Age 
0 a First_Class 60 
1 b Second_Class 30 
2 c Same_day 40 
3 d Standard Class 50

使用 merge() 函数进一步合并。

# using .merge() function 
new_data = pd.merge(df1, df2, on='identification')

这产生了下面的新数据;

identification Customer_Name Category Class Age 
0 a King furniture First_Class 60 
1 b West Office Supplies Second_Class 30 
2 c Adams Technology Same_day 40 
3 d Mercy R_materials Standard Class 50

.join() 方法也可以将不同索引的 DataFrame 组合成一个新的 DataFrame。 我们可以使用参数‘on’参数指定根据哪列进行合并。

让我们看看下面的例子,我们如何将单索引 DataFrame 与多索引 DataFrame 连接起来;

import pandas as pd 

# a dictionary to convert to a dataframe 
data1 = { 
'Customer_Name':['King', 'West', 'Adams'], 
'Category':['furniture', 'Office Supplies', 'Technology'],} 7 
# our second dictionary to convert to a dataframe 
data2 = { 
'Class':['First_Class', 'Second_Class', 'Same_day', 'Standard Class'], 
'Age':[60, 30, 40, 50]} 
# Convert the dictionary into DataFrame 
Ndata = pd.DataFrame(data1, index=pd.Index(['a', 'b', 'c'], name='identification')) 
index = pd.MultiIndex.from_tuples([('a', 'x0'), ('b', 'x1'), 
('c', 'x2'), ('c', 'x3')], 
names=['identification', 'x']) 19 
# Convert the dictionary into DataFrame 
Ndata2 = pd.DataFrame(data2, index= index) 
print(Ndata, "\n\n", Ndata2) 
# joining singly indexed with 
# multi indexed 
result = Ndata.join(Ndata2, how='inner')

我们的结果如下所示;

Customer_Name Category Class Age 
identification x 3 a x0 King furniture First_Class 60 
b x1 West Office Supplies Second_Class 30 
c x2 Adams Technology Same_day 40 
x3 Adams Technology Standard Class 50

连接DF

Pandas 中concat() 方法在可以在垂直方向(axis=0)和水平方向(axis=1)上连接 DataFrame。 我们还可以一次连接两个以上的 DataFrame 或 Series。

让我们看一个如何在 Pandas 中执行连接的示例;

import pandas as pd 

# a dictionary to convert to a dataframe 
data1 = {'identification': ['a', 'b', 'c', 'd'], 
'Customer_Name':['King', 'West', 'Adams', 'Mercy'], 
'Category':['furniture', 'Office Supplies', 'Technology', 'R_materials'],} 

# our second dictionary to convert to a dataframe 
data2 = {'identification': ['a', 'b', 'c', 'd'], 
'Class':['First_Class', 'Second_Class', 'Same_day', 'Standard Class'], 
'Age':[60, 30, 40, 50]} 

# Convert the dictionary into DataFrame 
df1 = pd.DataFrame(data1) 
df2 = pd.DataFrame(data2) 
#perform concatenation here based on horizontal axis 
new_data = pd.concat([df1, df2], axis=1) 
print(new_data)

这样就获得了新的 DataFrame :

identification Customer_Name Category identification \ 
0 a King furniture a 3 1 b West Office Supplies b 4 2 c Adams Technology c 5 3 d Mercy R_materials d 

Class Age 
0 First_Class 60 
1 Second_Class 30 
2 Same_day 40 
3 Standard Class 50

Merge和Join的效率对比

Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?下面我们来进行一下测。

两个 DataFrame 都有相同数量的行和两列,实验中考虑了从 100 万行到 1000 万行的不同大小的 DataFrame,并在每次实验中将行数增加了 100 万。我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。

上图描绘了操作所花费的时间(以毫秒为单位)。

正如我们从图中看到的,运行时间存在显着差异——最多相差 5 倍。随着 DataFrame 大小的增加,运行时间之间的差异也会增加。 两个 JOIN 操作几乎都随着 DataFrame 的大小线性增加。 但是,Join的运行时间增加的速度远低于Merge。

如果需要处理大量数据,还是请使用join()进行操作。

相关推荐

MySQL慢查询优化:从explain到索引,DBA手把手教你提升10倍性能

数据库性能是应用系统的生命线,而慢查询就像隐藏在系统中的定时炸弹。某电商平台曾因一条未优化的SQL导致订单系统响应时间从200ms飙升至8秒,最终引发用户投诉和订单流失。今天我们就来系统学习MySQL...

一文读懂SQL五大操作类别(DDL/DML/DQL/DCL/TCL)的基础语法

在SQL中,DDL、DML、DQL、DCL、TCL是按操作类型划分的五大核心语言类别,缩写及简介如下:DDL(DataDefinitionLanguage,数据定义语言):用于定义和管理数据库结构...

闲来无事,学学Mysql增、删,改,查

Mysql增、删,改,查1“增”——添加数据1.1为表中所有字段添加数据1.1.1INSERT语句中指定所有字段名语法:INSERTINTO表名(字段名1,字段名2,…)VALUES(值1...

数据库:MySQL 高性能优化规范建议

数据库命令规范所有数据库对象名称必须使用小写字母并用下划线分割所有数据库对象名称禁止使用MySQL保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)数据库对象的命名要能做到见名识意,...

下载工具合集_下载工具手机版

迅雷,在国内的下载地位还是很难撼动的,所需要用到的地方还挺多。缺点就是不开会员,软件会限速。EagleGet,全能下载管理器,支持HTTP(S)FTPMMSRTSP协议,也可以使用浏览器扩展检测...

mediamtx v1.15.2 更新详解:功能优化与问题修复

mediamtxv1.15.2已于2025年10月14日发布,本次更新在功能、性能优化以及问题修复方面带来了多项改进,同时也更新了部分依赖库并提升了安全性。以下为本次更新的详细内容:...

声学成像仪:泄露监测 “雷达” 方案开启精准防控

声学成像仪背景将声像图与阵列上配装的摄像实所拍的视频图像以透明的方式叠合在一起,就形成了可直观分析被测物产生状态。这种利用声学、电子学和信息处理等技术,变换成人眼可见的图像的技术可以帮助人们直观地认识...

最稳存储方案:两种方法将摄像头接入威联通Qu405,录像不再丢失

今年我家至少被4位邻居敲门,就是为了查监控!!!原因是小区内部监控很早就停止维护了,半夜老有小黄毛掰车门偷东西,还有闲的没事划车的,车主损失不小,我家很早就配备监控了,人来亮灯有一定威慑力,不过监控设...

离岗检测算法_离岗检查内容

一、研发背景如今社会许多岗位是严禁随意脱离岗位的,如塔台、保安室、监狱狱警监控室等等,因为此类行为可能会引起重大事故,而此类岗位监督管理又有一定困难,因此促生了智能视频识别系统的出现。二、产品概述及工...

消防安全通道占用检测报警系统_消防安全通道占用检测报警系统的作用

一、产品概述科缔欧消防安全通道占用检测报警系统,是创新行业智能监督管理方式、完善监管部门动态监控及预警预报体系的信息化手段,是实现平台远程监控由“人为监控”向“智能监控”转变的必要手段。产品致力于设...

外出住酒店、民宿如何使用手机检测隐藏的监控摄像头

最近,一个家庭在他们的民宿收到了一个大惊喜:客厅里有一个伪装成烟雾探测器的隐藏摄像头,监视着他们的一举一动。隐藏摄像头的存在如果您住在酒店或民宿,隐藏摄像头不应再是您的担忧。对于民宿,房东应报告所有可...

基于Tilera众核平台的流媒体流量发生系统的设计

曾帅,高宗彬,赵国锋(重庆邮电大学通信与信息工程学院,重庆400065)摘要:设计了一种基于Tilera众核平台高强度的流媒体流量发生系统架构,其主要包括:系统界面管理模块、服务承载模块和流媒体...

使用ffmpeg将rtsp流转流实现h5端播放

1.主要实现rtsp转tcp协议视频流播放ffmpeg下载安装(公认业界视频处理大佬)a、官网地址:www.ffmpeg.org/b、gitHub:github.com/FFmpeg/FFmp…c、推...

将摄像头视频流从Rtsp协议转为websocket协议

写在前面很多通过摄像头拿到的视频流格式都是Rtsp协议的,比如:海康威视摄像头。在现代的浏览器中,已经不支持直接播放Rtsp视频流,而且,海康威视提供的本身的webSdk3.3.0视频插件有很多...

华芸科技推出安全监控中心2.1 Beta测试版

全球独家支持hdmi在线实时监看摄像机画面,具单一、循环或同时监看四频道视频影像,可透过华芸专用红外线遥控器、airemote或是键盘鼠标进行操作,提供摄像机频道增购服务,满足用户弹性扩增频道需...