Python自动化:批量处理Excel,按要求筛选出数据并存到新表
liuian 2025-01-10 15:14 16 浏览
摘要: 你是否曾被重复的数据筛选工作折磨得筋疲力尽。现在,借助Python自动化工具,仅需几秒钟就能完成原本需要上千分钟的工作量,彻底告别了枯燥与低效!
引言
在仓库管理这个看似平凡却又充满挑战的岗位上,微信公众号粉丝小李担任着仓库主管的角色。每月,他都要执行一项看似简单却极其繁琐的任务:从过去几年的每月物品领用表中筛选出老板需要的数据,比如:领用数量大于1000的物品信息。这不仅是一项重复性极高的工作,而且手工操作一次表格就需要几分钟,每年的数据表都是按月存储的,操作一年的数据表就需要重复操作12次,而十年的数据就需要重复120次,耗费的时间累积起来高达上千分钟。
1.小李的挑战
小李在后台留言中描述了他的困境:“每年的数据表我都需要重复操作12次,十年的数据就是120次。这不仅让我感到疲惫,而且效率极低,手工操作一次表格就需要几分钟,累计起来就是上千分钟。”
2.传统方法的局限
在没有自动化工具辅助的情况下,小李的工作流程是这样的:
- 打开每个Excel文件,逐月查找领用数量。
- 手动筛选出领用数量大于1000的物品信息。
- 复制这些信息并粘贴到新的Excel表中。
- 保存并关闭每个文件,然后重复这个过程。
这个过程不仅耗时,而且容易出错,特别是当数据量庞大时,小李需要保持高度的专注力以避免遗漏或错误。
3.Python自动化的解决方案
我们为小李提供了一个Python脚本,这个脚本能够自动按条件筛选数据并保存到新的Excel里。使用pandas库,我们可以快速读取、筛选并合并数据。
import os
from openpyxl import load_workbook
import pandas as pd
from openpyxl.styles import Border, Side, PatternFill, Font, GradientFill, Alignment
def extract_and_select_data(folder_path, dest_dir):
try:
for filename in os.listdir(folder_path):
if filename.endswith('.xlsx'):
src = os.path.join(folder_path, filename)
os.makedirs(dest_dir, exist_ok=True)
dest_file = os.path.join(dest_dir, filename)
wb = load_workbook(src)
data = {} # 储存所有工作表中满足条件的数据,以工作表名称为键
sheet_names = wb.sheetnames
for sheet_name in sheet_names:
ws = wb[sheet_name]
qty_list = []
# 获取G列的数据,并用enumrate给其对应的元素编号
for row in range(2, ws.max_row+1):
qty = ws['G'+str(row)].value
qty_list.append(qty)
qty_idx = list(enumerate(qty_list)) # 用于编号
# 判断数据是否大于1000,然后返回大于1000的数据所对应的行数
row_idx = [] # 用于储存数量大于1000所对应的的行号
for i in range(len(qty_idx)):
if qty_idx[i][1] > 1000:
row_idx.append(qty_idx[i][0]+2)
# 获取满足条件的数据
data_morethan1K = []
for i in row_idx:
data_morethan1K.append(
ws['A'+str(i)+":"+'I'+str(i)])
data[sheet_name] = data_morethan1K
thin = Side(border_style="thin",
color="000000") # 定义边框粗细及颜色
wb = load_workbook("模板.xlsx")
ws = wb.active
for month in data.keys():
ws_new = wb.copy_worksheet(ws) # 复制模板中的工作表
ws_new.title = month
# 将每个月的数据条数逐个取出并写入新的工作表
# 按数据行数计数,每行数据对应9列,所以每行需分别写入9个单元格
for i in range(len(data[month])):
ws_new.cell(
row=i+2, column=1).value = data[month][i][0][0].value
ws_new.cell(
row=i+2, column=2).value = data[month][i][0][1].value
ws_new.cell(
row=i+2, column=3).value = data[month][i][0][2].value
ws_new.cell(
row=i+2, column=4).value = data[month][i][0][3].value.date()
ws_new.cell(
row=i+2, column=5).value = data[month][i][0][4].value
ws_new.cell(
row=i+2, column=6).value = data[month][i][0][5].value
ws_new.cell(
row=i+2, column=7).value = data[month][i][0][6].value
ws_new.cell(
row=i+2, column=8).value = data[month][i][0][7].value
ws_new.cell(
row=i+2, column=9).value = data[month][i][0][8].value
# 设置字号,对齐,缩小字体填充,加边框
# Font(bold=True)可加粗字体
for row_number in range(2, ws_new.max_row+1):
for col_number in range(1, 10):
c = ws_new.cell(
row=row_number, column=col_number)
c.font = Font(size=10)
c.border = Border(
top=thin, left=thin, right=thin, bottom=thin)
c.alignment = Alignment(
horizontal="left", vertical="center", shrink_to_fit=True)
wb.save(dest_file)
except Exception as e:
print(e)
if __name__ == "__main__":
import time
s_t = time.time()
extract_and_select_data("data", "历年领料数量大于1K")
e_t = time.time()
print(f"用时{e_t-s_t}s")
4.效果展示
通过上述脚本,小李现在可以在20秒钟内完成之前需要上千分钟的工作。这个自动化工具不仅提高了效率,还减少了因手动操作导致的错误。更重要的是,它让小李能够将更多的时间和精力投入到更有创造性和战略性的工作上。
结语
Python自动化不仅仅是编程技巧的展示,更是一种工作方式的革新。它能够帮助我们从重复性劳动中解放出来,让我们有更多时间去做更有创造性的工作。小李的故事证明了自动化的力量,希望他的经历能够激励更多的人去探索和利用Python自动化办公的无限可能。
如果你也像小李一样,面临着重复性工作的苦恼,或者对Python脚本的编写有任何疑问,欢迎在评论区留言,我们将为你提供一对一的技术支持!
本文为原创技术文章,转载请标明出处。如果你喜欢本文,别忘了点赞、转发和关注我们的公众号,获取更多技术干货!
数海丹心
大数据和人工智能知识分享与应用
132篇原创内容
公众号
相关推荐
- 2023年最新微信小程序抓包教程(微信小程序 抓包)
-
声明:本公众号大部分文章来自作者日常学习笔记,部分文章经作者授权及其他公众号白名单转载。未经授权严禁转载。如需转载,请联系开百。请不要利用文章中的相关技术从事非法测试。由此产生的任何不良后果与文...
- 测试人员必看的软件测试面试文档(软件测试面试怎么说)
-
前言又到了毕业季,我们将会迎来许多需要面试的小伙伴,在这里呢笔者给从事软件测试的小伙伴准备了一份顶级的面试文档。1、什么是bug?bug由哪些字段(要素)组成?1)将在电脑系统或程序中,隐藏着的...
- 复活,视频号一键下载,有手就会,长期更新(2023-12-21)
-
视频号下载的话题,也算是流量密码了。但也是比较麻烦的问题,频频失效不说,使用方法也难以入手。今天,奶酪就来讲讲视频号下载的新方案,更关键的是,它们有手就会有用,最后一个方法万能。实测2023-12-...
- 新款HTTP代理抓包工具Proxyman(界面美观、功能强大)
-
不论是普通的前后端开发人员,还是做爬虫、逆向的爬虫工程师和安全逆向工程,必不可少会使用的一种工具就是HTTP抓包工具。说到抓包工具,脱口而出的肯定是浏览器F12开发者调试界面、Charles(青花瓷)...
- 使用Charles工具对手机进行HTTPS抓包
-
本次用到的工具:Charles、雷电模拟器。比较常用的抓包工具有fiddler和Charles,今天讲Charles如何对手机端的HTTS包进行抓包。fiddler抓包工具不做讲解,网上有很多fidd...
- 苹果手机下载 TikTok 旧版本安装包教程
-
目前苹果手机能在国内免拔卡使用的TikTok版本只有21.1.0版本,而AppStore是高于21.1.0版本,本次教程就是解决如何下载TikTok旧版本安装包。前期准备准备美区...
- 【0基础学爬虫】爬虫基础之抓包工具的使用
-
大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学爬...
- 防止应用调试分析IP被扫描加固实战教程
-
防止应用调试分析IP被扫描加固实战教程一、概述在当今数字化时代,应用程序的安全性已成为开发者关注的焦点。特别是在应用调试过程中,保护应用的网络安全显得尤为重要。为了防止应用调试过程中IP被扫描和潜在的...
- 一文了解 Telerik Test Studio 测试神器
-
1.简介TelerikTestStudio(以下称TestStudio)是一个易于使用的自动化测试工具,可用于Web、WPF应用的界面功能测试,也可以用于API测试,以及负载和性能测试。Te...
- HLS实战之Wireshark抓包分析(wireshark抓包总结)
-
0.引言Wireshark(前称Ethereal)是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接...
- 信息安全之HTTPS协议详解(加密方式、证书原理、中间人攻击 )
-
HTTPS协议详解(加密方式、证书原理、中间人攻击)HTTPS协议的加密方式有哪些?HTTPS证书的原理是什么?如何防止中间人攻击?一:HTTPS基本介绍:1.HTTPS是什么:HTTPS也是一个...
- Fiddler 怎么抓取手机APP:抖音、小程序、小红书数据接口
-
使用Fiddler抓取移动应用程序(APP)的数据接口需要进行以下步骤:首先,确保手机与计算机连接在同一网络下。在计算机上安装Fiddler工具,并打开它。将手机的代理设置为Fiddler代理。具体方...
- python爬虫教程:教你通过 Fiddler 进行手机抓包
-
今天要说说怎么在我们的手机抓包有时候我们想对请求的数据或者响应的数据进行篡改怎么做呢?我们经常在用的手机手机里面的数据怎么对它抓包呢?那么...接下来就是学习python的正确姿势我们要用到一款强...
- Fiddler入门教程全家桶,建议收藏
-
学习Fiddler工具之前,我们先了解一下Fiddler工具的特点,Fiddler能做什么?如何使用Fidder捕获数据包、修改请求、模拟客户端向服务端发送请求、实施越权的安全性测试等相关知识。本章节...
- fiddler如何抓取https请求实现手机抓包(100%成功解决)
-
一、HTTP协议和HTTPS协议。(1)HTTPS协议=HTTP协议+SSL协议,默认端口:443(2)HTTP协议(HyperTextTransferProtocol):超文本传输协议。默认...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)