百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

python数据分析:介绍pandas库的数据类型Series和DataFrame

liuian 2025-01-10 15:14 31 浏览

安装pandas

pip install pandas -i https://mirrors.aliyun.com/pypi/simple/

使用pandas

直接导入即可 import pandas as pd

pandas的数据结构

pandas提供了两种主要的数据结构:Series 和 DataFrame,类似于python提供list列表,dict字典,tuple元组等数据类型用于存储数据。

1. Series

Series 是一种一维的数组(类似于 Python 的列表),可以存储任何数据类型(整数、字符串、浮点数、Python对象等)。Series 是一种带有标签的数据结构,每个数据点都有一个索引。

创建 Series

创建的series结构,默认索引从0开始(像list的索引一样),但是可以指定索引。

1)从列表创建Series

import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)

2)从字典创建 Series,键作为索引

import pandas as pd
data_dict = {'a': 1, 'b': 2, 'c': 3}
s = pd.Series(data_dict)
print(s)

3)指定索引创建Series

import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])
print(s)

Series的基本属性

  • values:返回 Series 中的数据值。
  • index:返回 Series 中的索引。
  • dtype:返回 Series 中数据的数据类型。
  • name:返回或设置 Series 的名称。

举例:定义一个series接口数据并指定索引和名称

data = [[1, 2, 3], [4, 5,6]]
s = pd.Series(data, name='一维数组',index=['a', 'b'])
print(f'值:{s.values}')
print(f'索引:{s.index}')
print(f'数据类型 {s.dtype}')
print(f'名称 {s.name}')

Series的函数

1)value_counts函数:对Series对象进行计数

  1. normalize:默认为False。设置为True,则函数返回每个值占总数的比例,而不是计数。
  2. sort:是否对结果进行排序。
  3. ascending:默认为False,计数结果按降序排列;设置为True,则按升序对计数进行排序。
  4. dropna:默认为True,表示从计数中排除NaN值。设置为False,则包含NaN值的计数也会被纳入统计。
  5. bins:整数、字符串或序列。如果给定,则返回的Series将包含给定数量的bin(箱)的计数。这个参数主要用于数值型数据的分箱处理,我们通常使用cut()函数进行分箱。

举例:

1)定义Series数据,计数后按照升序排列:

data_list =  ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'C','C']
se = pd.Series(data_list)
print(se.value_counts(ascending=True))

结果:

B 2

A 3

C 4

Name: count, dtype: int64

2)对数值型Series对象进行分箱后统计计数

data_list =  [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
se = pd.Series(data_list)
#bins=3 自动分了三个数据范围
print(se.value_counts(ascending=True,bins=3))

结果:

(10.333, 15.0] 1

(5.667, 10.333] 3

(0.985, 5.667] 12

Name: count, dtype: int64

3)使用pandas.cut()函数进行分箱处理

data_list =  [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
# 指定箱子的边界
bins = [0, 2, 4, 6, 8]
labels = ['0-2', '2-4', '4-6', '6-8']
cut_data = pd.cut(data_list, bins=bins, labels=labels)

# 使用value_counts()函数对分箱后的数据进行计数
counts = cut_data.value_counts()
# 打印结果
print(counts)

结果:

0-2 5

2-4 6

4-6 1

6-8 2

Name: count, dtype: int64

2. DataFrame

DataFrame 是一个二维的表格数据结构,具有标记的轴(行和列)。其中每一列相当于一个Series。

创建 DataFrame

和Series结构一样默认索引从0开始,当然也可以指定索引。

1)从字典创建 DataFrame,字典的键是列名

import pandas as pd
data_dict = {
'name': ['lilei', 'lili', 'wanglei'],
'age': [25, 30, 35],
'city': ['shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)
print(df)

2)从列表的列表创建DataFrame

data = [
['lilei', 25],
['lili', 30],
['wanglei', 35]
]
df = pd.DataFrame(data, columns=['Name', 'Age'])
print(df)

3)从Numpy 数组创建DataFrame并指定列名和索引

import numpy as np
data = np.array([[1, 2], [3, 4], [5, 6]])
df = pd.DataFrame(data, columns=['A', 'B'],index=['a','b','c'])
print(df)

Series和DataFrame数据的常用函数和功能

head(n):返回前 n 个元素,默认返回前5个

tail(n):返回后 n 个元素,默认返回后5个。

unique():返回 Series 中的唯一值(去掉重复的值)。

isnull():返回一个布尔 Series,指示每个值是否为 NaN。

dropna():删除所有 NaN值(numpy.nan)或者None值,返回一个新的数据

举例:定义一个series结构数据,打印下上面方法获取的数据

data = [1, 2, 3, 4, 5,[6,7],[8],None,{'a':10}]
s = pd.Series(data)
print(f'前3个元素\n {s.head(3)}')
print(f'后3个元素\n {s.tail(3)}')
print(f'判断是否为null\n {s.isnull()}')

举例:定义一个series结构数据,打印删除NaN值后的数据

import numpy as np
data = [1, 2, 3, 4, 5,None,np.nan]
s = pd.Series(data)
new_s =s.dropna()
print(f'删除NaN值\n {new_s}')

举例:定义一个series结构数据,打印去重后的数据

data = [1, 2, 3, 4, 5,4,5,6]
s = pd.Series(data)
print(f'唯一值 {s.unique()}')

to_dict函数:将DataFrame数据转换为字典

字典的键和值对应的是列名和列值

举例:读取csv文件内容,并转换为字典

import pandas as pd
dataframe = pd.read_csv("1.csv")
print(dataframe)
#将DataFrame数据格式转换为字典
print(dataframe.to_dict())

结果如下:

选择列数据

import pandas as pd
dataframe = pd.read_csv("1.csv")
  • 选择某一列数据
#选择Nmae这一列
print(dataframe['zx`	Name']) 
#选择Age这一列
print(dataframe.age) 

#通过Ioc函数选择Name这一列
print(dataframe.loc[:,['Name']])

返回的某一列的数据类型是一个Series类型,对某列数据可以做循环打印该列的值。

for i in dataframe.Name:
   print(i)
  • 选择多列
#选择Nmae,age这两列
print(dataframe[['Name','age']])
#通过loc()函数选择Name和age两列
print(dataframe.loc[:,['Name','age']])

选择行数据

使用方式类似于list的切片操作

#取前3行数据
print(dataframe[0:3]) 
 #取倒数第4行和第5行
print(dataframe[-4:-2])
#取前10行中每2行取1个
print(dataframe[0:10:2]) 

通过iIoc函数获取多行数据

#取前10行数据
print(dataframe.iloc[:10,:]) 

选择指定的行和列数据

通过Ioc函数取某些行和列数据

print(dataframe.loc[0:3,['Name']])
print(dataframe.loc[0:3,['Name','age']])

按条件选择

举例:筛选age列大于25的数据

print(dataframe[dataframe.age > 25])

举例:筛选性别为男的数据

print(dataframe[dataframe.sex == 'man'])

举例: 筛选索引等于0的数据

print(dataframe[dataframe.index == 0])

举例:筛选性别为男并age大于25的数据

print(dataframe[(dataframe.sex == 'man') & (dataframe.age > 25)])

举例:筛选年龄大于25的Name这一列的数据

print(dataframe[dataframe.age > 25].loc[:,['Name']])

sort_values函数:使用该函数进行排序

参数介绍

  • by:传入单个字符串或字符串列表(1个或者多个列名),表示按照列名进行排序。
  • axis:默认为0。0表示按列的值排序,1表示按行的值排序;一般不使用
  • ascending:布尔值或布尔值列表,默认为True。True表示升序排序,False表示降序排序。如果是一个列表,则列表中的每个元素对应by参数中每个列的排序顺序。
  • inplace:布尔值,默认为False。如果为True,则直接修改原DataFrame并返回None;如果为False,则返回一个新的排序后的DataFrame副本。
  • kind:排序算法的选择,默认为'quicksort'。其他选项包括'mergesort'和'heapsort'。对于大数据集,'quicksort'通常是最快的,但不一定是最稳定的。
  • na_position:{'first', 'last'},默认为'last'。表示缺失值(NaN)应该被放在排序后的数组的开始还是结束。
  • ignore_index:布尔值,默认为False。如果为True,则结果DataFrame的索引将被重置为默认的整数索引。

测试代码:

1)按列排序(升序)

print(dataframe.sort_values(by='Name'))
print(dataframe.sort_values(by=['Name','age']))


2)按列排序(倒序)

print(dataframe.sort_values(by='age',ascending=False))

3)不同列排列顺序不同(比如第一列正序,第二列倒序)

print(dataframe.sort_values(by=['Name','age'],ascending=[True,False]))

insert函数:插入列数据

插入某一列数据,参数介绍:

  • loc: 传入整数,代表插入在第几列(0代表第1列)
  • column:列名
  • value:每列的值(单个值表示每一行值相同;传入列表,列表中的元素对应每一行的值)
  • allow_duplicates:为True表示允许列名重复,否则不允许

测试代码:

#对DataFrame对象插入数据
dataframe.insert(2,'area','China')
dataframe.insert(3,'area',['China','America','korea','japan','China','America','korea','japan'],allow_duplicates=True)
print(dataframe)

结果:

groupby函数:分组聚合

支持对一个或多个列的值进行分组,应用聚合函数(如求和、平均值、最大值、最小值等)或其他操作。类似于大家使用sql查询数据库语句时通过group by分组聚合一样。

参数介绍:

  1. by:指定要根据哪个字段进行分组。可以是一个列名或者包含多个列名的列表。默认值None,表示不分组。
  2. axis:指定分组的方向。0或index表示按列分组(即沿着行的方向进行分组)。1或columns表示按行分组(即沿着列的方向进行分组)。默认情况下是0,即按列分组。
  3. level:当DataFrame的索引为多重索引时,level参数指定用于分组的索引级别。可以传入多重索引中索引的下标(如0, 1, ...)或索引名。如果传入多个级别,则使用列表形式。level参数不能与by参数同时使用。
  4. as_index:指定分组后的结果是否将分组列的值作为索引。如果按单列分组,结果默认是单索引;如果按多列分组,结果默认是多重索引。将as_index设置为False可以重置索引为默认的整数索引(0, 1, ...)。
  5. sort:指定分组结果是否按照分组列的值进行排序。默认情况下是True,即按升序排列。将sort设置为False则不排序,这可能会提升性能。
  6. observed:指定是否观察数据的层次结构。在某些情况下,当分组列包含大量唯一值时,设置observed=True可以提高性能,因为它只考虑在数据中出现的值。
  7. dropna:默认情况下,分组列的NaN值在分组结果中不保留。将dropna设置为False可以保留NaN分组。

函数执行后返回的是DataFrameGrouyBy对象,该对象支持多个聚合函数,类似如下:

  1. sum():计算分组数据的总和。
  2. mean():计算分组数据的平均值。
  3. max():找出分组数据中的最大值。
  4. min():找出分组数据中的最小值。
  5. median():计算分组数据的中位数。
  6. std():计算分组数据的标准差,反映数据的离散程度。
  7. var():计算分组数据的方差,也是反映数据离散程度的一个指标。
  8. count():计算分组中非空(非NA/null)值的数量。
  9. first():返回分组中的第一个值。
  10. last():返回分组中的最后一个值。
  11. nth(n):返回分组中的第n个值,n可以是正数也可以是负数,负数表示从末尾开始计数。
  12. size():返回分组中的元素数量。
  13. prod():计算分组数据的乘积。
  14. nunique():计算分组中唯一值的数量。

此外,pandas的agg()函数允许你传入一个函数列表或字典,对分组数据应用多个聚合函数。例如:agg(['sum', 'mean', 'max']) 或者 agg({'某一列': ['sum', 'mean', 'max']})

举例:定义一个DataFrame的数据

import pandas as pd
data_dict = {'group': ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'B', 'C'],
'name': ['lilei', 'lili', 'wanglei', 'wangning', 'wangling', 'wangming', 'wangyu', 'liyi', 'xiaolei'],
'age': [25, 30, 35,21,23,24,25,26,32],
'city': ['shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)

1)按照单个group列分组,统计age列的汇总值

print(df.groupby(by='group')['age'].sum())

2)按照多个列分组后,统计age列汇总值,最大值,最小值等

#以下两种方式都可以
print(df.groupby(by=['group','city'])['age'].agg(['sum','max','min']))
print(df.groupby(by=['group','city']).agg({'age':['sum','max','min']}))

3)按照单个group列分组,统计age列的汇总值并添加为新的一列数据

我们可以使用transform函数对每个组应用一个聚合函数,该函数将返回与原始DataFrame形状相同的对象

#聚合后添加sum列
df['sum'] = df.groupby(by='group')['age'].transform('sum')
print(df)

4)按照单个group列分组,统计age列的汇总值,并使用filter函数过滤某些数据

# 只保留'age'列总和大于80的组
filtered =  df.groupby(by='group').filter(lambda x: (x['age'].sum() > 80))
print(filtered)


共勉: 东汉·班固《汉书·枚乘传》:“泰山之管穿石,单极之绠断干。水非石之钻,索非木之锯,渐靡使之然也。”

-----指水滴不断地滴,可以滴穿石头;

-----比喻坚持不懈,集细微的力量也能成就难能的功劳。

----感谢读者的阅读和学习,谢谢大家。

相关推荐

Python中的列表详解及示例_python列表讲解

艾瑞巴蒂干货来了,数据列表,骚话没有直接来吧列表(List)是Python中最基本、最常用的数据结构之一,它是一个有序的可变集合,可以包含任意类型的元素。列表的基本特性有序集合:元素按插入顺序存储可变...

PowerShell一次性替换多个文件的名称

告别繁琐的文件重命名,使用PowerShell语言批量修改文件夹中的文件名,让您轻松完成重命名任务在日常工作中,我们经常需要对大量文件进行重命名,以便更好地管理和组织。之前,我们曾介绍过使用Pytho...

小白必看!Python 六大数据类型增删改查秘籍,附超详细代码解析

在Python中,数据类型可分为可变类型(如列表、字典、集合)和不可变类型(如字符串、元组、数值)。下面针对不同数据类型详细讲解其增删改查操作,并给出代码示例、输出结果及分析总结。1.列表(Li...

python数据容器之列表、元组、字符串

数据容器分为5类,分别是:列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)list#字面量[元素1,元素2,元素3,……]#定义变量变量名称=[元素1,元素...

python列表(List)必会的13个核心技巧(附实用方法)

列表(List)是Python入门的关键步骤,因为它是编程中最常用的数据结构之一。以下是高效掌握列表的核心技巧和实用方法:一、理解列表的本质可变有序集合:可随时修改内容,保持元素顺序混合类型:一个列表...

如何利用python批量修改文件名_python如何对文件进行批量命名

很多语言都可以做到批量修改文件名,今天我就给大家接受一下Python的方法,首选上需求。图片中有10个txt文件,现在我需要在这些文件名的前面全部加一个“学生”,可以吗?见证奇迹的时刻到了。我是怎么做...

Python中使用re模块实现正则表达式的替换字符串操作

#编程语言#我是"学海无涯自学不惜!",关注我,一同学习简单易懂的Python编程。0基础学python(83)Python中,导入re模块后还可以进行字符串的替换操作,就是sub()...

python列表十大常见问题,你遇到第几个?

Python列表常见问题及解决方案1.修改列表时的常见陷阱问题:在遍历时修改列表#错误做法:在遍历时删除元素会导致意外结果numbers=[1,2,3,4,5,6]forn...

python入门007:编辑列表_python列表怎么写入文件

一、列表的编辑操作列表创建后,随着程序的运行,可以通过对列表元素的增删改操作来编辑列表。1、修改列表元素的值修改列表元素的操作方法与访问列表元素的方法类似。例如,要修改列表元素的值,先指定列表及元素...

Python教程:在python中修改元组详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中修改元组详解》。本知识点主要内容有:在Python中直接使用赋值运算符“=”给元组重新赋值、在Python中使用加赋值运...

Python列表(List)一文全掌握:核心知识点+20实战练习题

Python列表(List)知识点教程一、列表的定义与特性定义:列表是可变的有序集合,用方括号[]定义,元素用逗号分隔。list1=[1,"apple",3.14]lis...

Python教程-列表复制_python对列表进行复制

作为软件开发者,我们总是努力编写干净、简洁、高效的代码。Python列表是一种多功能的数据结构,它允许你存储一个项目的集合。在Python中,列表是可变的,这意味着你可以在创建一个列表后改变它的...

Python入门学习教程:第 6 章 列表

6.1什么是列表?在Python中,列表(List)是一种用于存储多个元素的有序集合,它是最常用的数据结构之一。列表中的元素可以是不同的数据类型,如整数、字符串、浮点数,甚至可以是另一个列表。列...

Python列表、元组、字典和集合_python中的列表元组和字典

Python中的列表(List)、元组(Tuple)、字典(Dict)和集合(Set)是四种最常用的核心数据结构。掌握它们的基础操作只是第一步,真正发挥威力的是那些高级用法和技巧。首先我们先看一下这...

学习编程第167天 python编程 使用format方法灵活替换字符串

今天学习的是刘金玉老师零基础Python教程第51期,主要内容是python编程使用format方法灵活替换字符串。一、format方法(一)format方法是字符串自带的方法,使用的format方法...