python实现Lasso回归分析(特征筛选、建模预测)
liuian 2024-12-20 17:19 40 浏览
实现功能:
python实现Lasso回归分析(特征筛选、建模预测)
输入结构化数据,含有特征以及相应的标签,采用Lasso回归对特征进行分析筛选,并对数据进行建模预测。
实现代码:
1 | import numpy as np |
2 | import warnings |
3 | warnings.filterwarnings(action='ignore') |
4 | import pandas as pd |
5 | import matplotlib.pyplot as plt |
6 | from sklearn import metrics |
7 | from sklearn.metrics import mean_squared_error |
8 | from sklearn.linear_model import Lasso,LassoCV |
9 | import seaborn as sns |
10 | #==================读取数据================= |
11 | class Solution(): |
12 | def __init__(self): |
13 | feature = ['男', '女', '年龄', 'CCP-正常', 'CCP-异常', 'MCV-正常', 'MCV-异常', |
14 | 'AKA-正常', 'AKA-异常','RF-正常', 'RF-异常', 'ANA-正常', 'ANA-异常', |
15 | 'ds-DNA-正常', 'ds-DNA-异常','CRP-正常', 'CRP-异常', 'ESR-正常', 'ESR-异常', |
16 | '尿蛋白-正常', '尿蛋白-异常', '尿潜血-正常', '尿潜血-异常','尿红细胞-正常', |
17 | '尿红细胞-异常', 'WBC-正常', 'WBC-异常', 'Hb-正常', 'Hb-异常', 'PLT-正常', |
18 | 'PLT-异常', 'ALT-正常', 'ALT-异常', 'AST-正常', 'AST-异常', 'r-GT-正常', |
19 | 'r-GT-异常', 'TBIL-正常', 'TBIL-异常', 'ALB-正常','ALB-异常', 'GLB-正常', |
20 | 'GLB-异常', 'A/O-正常', 'A/O-异常', 'Cr-正常', 'Cr-异常', 'BUN-正常', |
21 | 'BUN-异常', 'UA-正常', 'UA-异常', 'C3-正常', 'C3-异常', 'C4-正常', 'C4-异常', |
22 | 'IgA-正常', 'IgA-异常', 'IgG-正常','IgG-异常', 'IgE-正常', 'IgE-异常', |
23 | '晨僵正常', '晨僵异常', '发热正常', '发热异常', '雷诺正常', '雷诺异常', |
24 | '口眼干正常', '口眼干异常', '头晕正常', '头晕异常', '四肢正常', '四肢异常', |
25 | '胸部CT正常', '胸部CT异常', '肺结节正常', '肺结节异常', '诊断结果'] |
26 | self.feature=feature |
27 | |
28 | def Data_sort(self,file): |
29 | data = pd.read_excel(file) |
30 | data = pd.DataFrame(data) |
31 | random_state_value = 90 # 随机种子 |
32 | sample_number = 82 # 欠采样数目 |
33 | def norm_2(x): |
34 | return (x - stats['min']) / (stats['max']-stats['min']) |
35 | gy_list=['年龄'] |
36 | data_gy=data[gy_list] |
37 | stats = data_gy.describe() |
38 | stats = stats.transpose() |
39 | data[gy_list]=norm_2(data_gy) |
40 | data1 = data[self.feature] |
41 | data1 = data1.dropna() # 删除含缺失值的行 |
42 | data1=data1[~data1['诊断结果'].isin([2])] |
43 | print(len(data1)) |
44 | dataset=data1 |
45 | train_dataset = dataset.sample(frac=0.7, random_state=random_state_value) |
46 | test_dataset = dataset.drop(train_dataset.index) |
47 | print(len(test_dataset)) |
48 | train_dataset[train_dataset['诊断结果'].isin([1])]=\ |
49 | train_dataset[train_dataset['诊断结果'].isin([1])].iloc[:sample_number] |
50 | train_NRA=train_dataset[train_dataset['诊断结果'].isin([0])] |
51 | train_RA=train_dataset[train_dataset['诊断结果'].isin([1])] |
52 | train_dataset=train_NRA.append(train_RA) |
53 | train_dataset=train_dataset.sample(frac=1,random_state=0) |
54 | print(len(train_dataset)) |
55 | train_labels =train_dataset.pop('诊断结果') |
56 | test_labels =test_dataset.pop('诊断结果') |
57 | return train_dataset,train_labels,test_dataset,test_labels |
58 | |
59 | #==============Lasso变量筛选==================== |
60 | def optimal_lambda_value(self): |
61 | Lambdas = np.logspace(-5, 2, 200) #10的-5到10的2次方 |
62 | # 构造空列表,用于存储模型的偏回归系数 |
63 | lasso_cofficients = [] |
64 | for Lambda in Lambdas: |
65 | lasso = Lasso(alpha = Lambda, normalize=True, max_iter=10000) |
66 | lasso.fit(train_dataset, train_labels) |
67 | lasso_cofficients.append(lasso.coef_) |
68 | # 绘制Lambda与回归系数的关系 |
69 | plt.plot(Lambdas, lasso_cofficients) |
70 | # 对x轴作对数变换 |
71 | plt.xscale('log') |
72 | # 设置折线图x轴和y轴标签 |
73 | plt.xlabel('Lambda') |
74 | plt.ylabel('Cofficients') |
75 | # 显示图形 |
76 | plt.show() |
77 | # LASSO回归模型的交叉验证 |
78 | lasso_cv = LassoCV(alphas = Lambdas, normalize=True, cv = 10, max_iter=10000) |
79 | lasso_cv.fit(train_dataset, train_labels) |
80 | # 输出最佳的lambda值 |
81 | lasso_best_alpha = lasso_cv.alpha_ |
82 | print(lasso_best_alpha) |
83 | return lasso_best_alpha |
84 | |
85 | # 基于最佳的lambda值建模 |
86 | def model(self,train_dataset, train_labels,lasso_best_alpha): |
87 | lasso = Lasso(alpha = lasso_best_alpha, normalize=True, max_iter=10000) |
88 | lasso.fit(train_dataset, train_labels) |
89 | return lasso |
90 | |
91 | def feature_importance(self,lasso): |
92 | # 返回LASSO回归的系数 |
93 | dic={'特征':train_dataset.columns,'系数':lasso.coef_} |
94 | df=pd.DataFrame(dic) |
95 | df1=df[df['系数']!=0] |
96 | print(df1) |
97 | coef = pd.Series(lasso.coef_, index=train_dataset.columns) |
98 | imp_coef = pd.concat([coef.sort_values().head(10), coef.sort_values().tail(10)]) |
99 | sns.set(font_scale=1.2) |
100 | # plt.rc('font', family='Times New Roman') |
101 | plt.rc('font', family='simsun') |
102 | imp_coef.plot(kind="barh") |
103 | plt.title("Lasso回归模型") |
104 | plt.show() |
105 | return df1 |
106 | |
107 | def prediction(self,lasso): |
108 | # lasso_predict = lasso.predict(test_dataset) |
109 | lasso_predict = np.round(lasso.predict(test_dataset)) |
110 | print(sum(lasso_predict==test_labels)) |
111 | print(metrics.classification_report(test_labels,lasso_predict)) |
112 | print(metrics.confusion_matrix(test_labels, lasso_predict)) |
113 | RMSE = np.sqrt(mean_squared_error(test_labels,lasso_predict)) |
114 | print(RMSE) |
115 | return RMSE |
116 | |
117 | if __name__=="__main__": |
118 | Object1=Solution() |
119 | train_dataset, train_labels, test_dataset, test_labels=\ |
120 | Object1.Data_sort('F:\医学大数据课题\RA预测\RA预测\特征.xlsx') |
121 | lasso_best_alpha=Object1.optimal_lambda_value() |
122 | lasso=Object1.model(train_dataset, train_labels,lasso_best_alpha) |
123 | feature_choose=Object1.feature_importance(lasso) |
124 | RMSE=Object1.pR[-123]C[-1]:RCrediction(lasso) |
实现效果:
# 绘制Lambda与回归系数的关系
# 基于最佳的lambda值建模进行特征分析
# 基于最佳的lambda值建模进行预测分析
喜欢记得点赞,在看,收藏,加关注(V订阅号:数据杂坛),将持续更新!
相关推荐
- 快速上手maven
-
Maven的作用在开发过程中需要用到各种各样的jar包,查找和下载这些jar包是件费时费力的事,特别是英文官方网站,可以将Maven看成一个整合了所有开源jar包的合集,我们需要jar包只需要从Mav...
- Windows系统——配置java环境变量
-
怎么配置java环境变量呢?首先是安装好jdk然后我的电脑右键选择属性然后选择左侧高级系统设置高级然后点环境变量然后在用户变量或系统变量中配置,用户变量指的是只有当前用户可用,系统变量指的是系统中...
- ollama本地部署更改默认C盘,Windows配置环境变量方法
-
ollama是一个大语言模型(LLM——LargeLanguageModel),本地电脑安装网上也要很多教程,看上去非常简单,一直下一步,然后直接就可以使用了。但是我在实操的时候并不是这样,安装完...
- # Windows 环境变量 Path 显示样式更改
-
#怎样学习Java##Windows环境变量Path显示样式更改##1、传统Path环境变量显示:```---》键盘上按【WIN+I】打开系统【设置】---》依次点击---》【系统...
- 如何在Windows中创建用户和系统环境变量
-
在Windows中创建环境变量之前您应该了解的事情在按照本指南中所示的任何步骤创建指向文件夹、文件或其他任何内容的用户和系统变量之前,您应该了解两件事。第一个也是最重要的一个是了解什么是环境变量。...
- Windows 中的环境变量是什么?
-
Windows中的环境变量是什么?那么,Windows中的环境变量是什么?简而言之,环境变量是描述应用程序和程序运行环境的变量。所有类型的程序都使用环境变量来回答以下问题:我安装的计算机的名称是什么...
- 【Python程序开发系列】谈一谈Windows环境变量:系统和用户变量
-
这是我的第350篇原创文章。一、引言环境变量(environmentvariables)一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等。环境变量是在操作...
- 系统小技巧:还原Windows10路径环境变量
-
有时,我们在Windows10的“运行”窗口中执行一些命令或运行一些程序,这时即便没有指定程序的具体路径,只输入程序的名称(如notepad.exe),便可以迅速调用成功。这是因为Windows默认...
- Windows10系统的“环境变量”在哪里呢?
-
当我们在操作系统是Windows10的电脑里安装了一些软件,要通过配置环境变量才能使用软件时,在哪里能找到“环境变量”窗口呢?可以按照下面的步骤找到“环境变量”。说明:下面的步骤和截图是在Window...
- 系统小技巧:彻底弄懂Windows 10环境变量
-
每当我们进行系统清理时,清理软件总能自动找到Windows的临时文件夹之所在,然后加以清理,即便是我们重定向了TEMP目录也是如此。究其原因,是因为清理软件会根据TEMP环境变量来判断现有临时文件夹的...
- MySQL 5.7 新特性大全和未来展望
-
本文转自微信公众号:高可用架构作者:杨尚刚引用美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计。前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存...
- MySQL系列-源码编译安装(v8.0.25)
-
一、前言生产环境建议使用二进制安装法,其优点是部署简单、快速、方便,并且相对"yum/rpm安装"方法能更方便地自定义文件存放的目录结构,方便用脚本批量部署,方便日后运维管理。在生产...
- MySQL如何实时同步数据到ES?试试这款阿里开源的神器!
-
前几天在网上冲浪的时候发现了一个比较成熟的开源中间件——Canal。在了解了它的工作原理和使用场景后,顿时产生了浓厚的兴趣。今天,就让我们跟随我的脚步,一起来揭开它神秘的面纱吧。简介canal翻译为...
- 技术老兵十年专攻MySQL:编写了763页核心总结,90%MySQL问题全解
-
MySQL是开放源码的关系数据库管理系统,由于性能高、成本低、可靠性好,成为现在最流行的开源数据库。MySQL学习指南笔记领取方式:关注、转发后私信小编【111】即可免费获得《MySQL进阶笔记》的...
- Mysql和Hive之间通过Sqoop进行数据同步
-
文章回顾理论大数据框架原理简介大数据发展历程及技术选型实践搭建大数据运行环境之一搭建大数据运行环境之二本地MAC环境配置CPU数和内存大小查看CPU数sysctl machdep.cpu...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
飞牛OS入门安装遇到问题,如何解决?
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)