人工智能基础——python:Pandas与数据处理
liuian 2024-12-20 17:18 82 浏览
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!二维码详情
Pandas 是 Python 中用于数据操纵和分析的开源库,它提供了高性能、易于使用的数据结构和数据分析工具,使得数据清洗、转换、分析和可视化变得更加简单和高效。本文将介绍 Pandas 库的基础知识和常见数据处理操作,帮助读者更好地理解 Pandas 的优势以及如何利用 Pandas 处理数据。
一、Pandas 基础
1. 安装 Pandas
在开始使用 Pandas 之前,首先需要安装 Pandas 库。可以通过 pip 安装 Pandas,打开命令行终端并输入以下命令:
pip install pandas
2. 导入 Pandas 模块
安装完成后,可以将 Pandas 库导入到 Python 程序中。通常使用如下方式导入 Pandas 模块:
```python
import pandas as pd
在导入 Pandas 模块之后,就可以使用 Pandas 提供的函数和数据结构。
3. Pandas 的数据结构
Pandas 提供了两种主要的数据结构:Series 和 DataFrame。Series 是一维带标签的数组,可以存储任意类型的数据;DataFrame 是二维的、大小可变的表格结构,可以存储不同数据类型的列。
二、常见数据处理操作
1. 读取数据
Pandas 提供了丰富的读取数据的函数,可以读取各种格式的数据文件,如 CSV、Excel、SQL、JSON 等。其中,```pandas.read_csv()``` 函数是最常用的,可以读取 CSV 格式的数据文件。
import pandas as pd
# 读取 CSV 文件
data = pd.read_csv('data.csv')
2. 数据预览
一旦数据被读取,可以使用一些常用的函数来预览数据,包括 ```head()```、```tail()```、```info()``` 和 ```describe()```。
# 查看数据的前几行
print(data.head())
# 查看数据的后几行
print(data.tail())
# 查看数据的基本信息
print(data.info())
# 统计数据的基本描述统计信息
print(data.describe())
3. 数据清洗
在真实的数据集中,经常需要进行数据清洗和预处理。Pandas 提供了一系列函数来处理缺失值、重复值、异常值等。
# 处理缺失值
data.dropna() # 删除包含缺失值的行
data.fillna(value) # 填充缺失值
data.interpolate() # 插值填充缺失值
# 处理重复值
data.drop_duplicates() # 删除重复行
data.drop_duplicates(subset=['column_name']) # 根据指定列名删除重复行
4. 数据筛选与排序
Pandas 允许根据条件从 DataFrame 中筛选出符合条件的数据,并且可以根据指定的列对数据进行排序。
# 数据筛选
data_selected = data[data['column_name'] > value]
# 数据排序
data_sorted = data.sort_values(by='column_name', ascending=False)
5. 数据分组与聚合
Pandas 中的 ```groupby()``` 函数可以基于某些条件对数据进行分组,然后对各组数据进行聚合计算。
# 数据分组
grouped = data.groupby('column_name')
# 对分组数据进行聚合计算
result = grouped['column_name'].agg(['mean', 'sum', 'count'])
6. 数据合并与连接
Pandas 提供了多种函数来合并和连接不同的数据集,如 ```concat()```、```merge()``` 和 ```join()``` 等。
# 数据合并
result = pd.concat([data1, data2])
# 数据连接
result = pd.merge(data1, data2, on='key')
7. 数据可视化
Pandas 结合 Matplotlib 库可以实现数据的可视化,可以绘制折线图、柱状图、散点图等。
import matplotlib.pyplot as plt
# 绘制折线图
data.plot(x='column_x', y='column_y', kind='line')
plt.show()
# 绘制柱状图
data.plot(x='column_x', y='column_y', kind='bar')
plt.show()
三、应用示例
1. 数据分析
使用 Pandas 可以快速进行数据预处理和分析,如统计分析、趋势分析、相关性分析等。
# 统计分析
mean_value = data['column_name'].mean()
max_value = data['column_name'].max()
min_value = data['column_name'].min()
# 相关性分析
correlation = data['column1'].corr(data['column2'])
2. 数据挖掘
Pandas 可以作为数据挖掘的工具,通过对数据进行筛选、分组、聚合等操作,提取有价值的信息和结论。
python
# 筛选关键信息
selected_data = data[data['column_name'] > value]
# 数据聚合
grouped_data = selected_data.groupby('column_name').sum()
3. 数据可视化
结合 Matplotlib 和 Pandas,可以对数据进行可视化呈现,帮助人们更直观地理解数据。
```python
# 绘制散点图
data.plot(x='column_x', y='column_y', kind='scatter')
plt.show()
# 绘制饼图
data['column_name'].value_counts().plot(kind='pie')
plt.show()
总结:
Pandas 是 Python 中重要的数据处理库,它提供了丰富的数据结构和功能,方便用户对数据进行清洗、转换、分析和可视化。通过本文的介绍,读者可以了解 Pandas 库的基础知识和常见的数据处理操作,希望可以帮助读者更好地利用 Pandas 处理数据,并在实际的数据分析和挖掘工作中发挥作用。
不知道人工智能如何学习?不知道单片机如何运作?不知道嵌入式究竟是何方神圣?搞不清楚什么是物联网?遇到问题无人可问?来我的绿泡泡交流群吧!里面有丰富的人工智能资料,帮助你自主学习人工智能相关内容,不论是基础的Python教程、OpenCV教程以及机器学习等,都可以在群中找到;单片机毕设项目、单片机从
入门到高阶的详细解读、单片机的一系列资料也备好放入群中!关于嵌入式,我这里不仅仅有嵌入式相关书籍的电子版本,更是有丰富的嵌入式学习资料,100G stm32综合项目实战提升包,70G 全网最全嵌入式&物联网资料包,嵌入式面试、笔试的资料,物联网操作系统FreeRTOS课件源码!群内高手云集,各位大佬能够为您排忧解难,让您在学习的过程中如虎添翼!扫码进群即可拥有这一切!还在等什么?赶快拿起手机,加入群聊吧!二维码详情
相关推荐
- 电脑音量小喇叭不见了(电脑声音喇叭图标不见了怎么办)
-
如果您电脑上的小喇叭(扬声器)不见了,可以尝试以下方法找回:1.检查设备管理器:在Windows下,右键点击“我的电脑”(或此电脑)->点击“属性”->点击“设备管理器”,查看“声音、视...
- 腾达路由器手机设置教程(腾达路由器手机设置教程视频)
-
用手机设置腾达路由器的方法如下:1在手机上打开浏览器,输入路由器背面的管理IP和用户及对应的密码2一般第一次打开,默认会跳出设置向导,准备好宽带用户名和密码,3按向导提示输入相应内容4在无线设置的安全...
- 自配电脑配置推荐(自配电脑配置推荐百度)
-
首先,像这类软件最低要求不高。最高没上限。纯粹看你的工程量大小。CPU有双核,内存有4G,就可以运行。但是实际体验肯定比较差,卡是肯德。渲染时间也会超长,一个小作品渲染几小时是正常的。稍微大点的工程也...
- 2025年平板性价比排行(2020年值得买的平板)
-
推荐台电P30S好。 基本配置:10.1英寸IPS广视角屏幕,1280*800分辨率,16:10的黄金显示比例,K9高压独立功放,支持3.5mm耳麦接口,联发科MT8183八核处理器,4GB...
- 2020显卡天梯图10月(2020显卡天梯图极速空间)
-
排行球队名称积分已赛胜平负进球失球净胜球 1?诺维奇城974629107753639 2?沃特福德91462710...
-
- 笔记本电脑无线网络连接(笔记本电脑无线网络连接不上怎么办)
-
一、笔记本电脑怎么连接wifi---win7系统笔记本连接wifi1、要先创建无线网络连接,将鼠标移到Win7的开始菜单,然后点击“控制面板”。2、然后点击“网络和Internet”。3、再打开“网络和共享中心”,这是Win7系统必有的功...
-
2025-12-22 05:55 liuian
- wind数据库(wind数据库官网)
-
先购买wind数据库,安装好wind取得使用权后,按照wind所给提示,输入账户和密码可使用wind数据库。Wind资讯金融终端是一个集实时行情、资料查询、数据浏览、研究分析、新闻资讯为一体的金融数据...
- 如何关闭360家庭防火墙(如果关闭360家庭防火墙)
-
关闭方法如下:1.打开手机360主界面之后,点击“安全防护中心”。2.点击第三列“入口防护”下方的“查看状态”按钮。3.在列出的功能项中找到“局域网防护”,直接点击后面的“关闭”按钮,关闭所有的“局域...
- 笔记本电脑型号配置怎么看(怎么查自己电脑的型号)
-
查电脑的配置和型号方法:方法一:1、右键单击“此电脑”,点击属性2、这里可以看到操作系统,CPU等大致信息3、点击设备管理器4、这里可以查看具体硬件的详细信方法二:1、首先打开电脑上的“控制面板”2、...
- pscs6序列号是什么
-
AdobePhotoshopCS6就二个版本(测试版和正式版)1、AdobePhotoshopCS6是AdobePhotoshop的第13代,是一个较为重大的版本更新。2、Photoshop在前几...
- win7桌面图片怎么设置(win7如何设置桌面图片)
-
1、首先用鼠标右键单击桌面的空白处。然后在弹出的菜单上选择“个性化”选项。这样就弹出了的个性化窗口上能显示看到“桌面背景”按钮。点击它即可。2、继续打开了选择“桌面背景”选项,然后在上面选择你想要设置...
- windows安卓下载(win安卓版)
-
2265安卓网是安全的,2265安卓网成立于2012年初,网站一直努力为各位安卓爱好者提供最新、最全的安卓游戏软件资源下载。经过几个月的努力、和广大安卓用户的支持、2265安卓网截至到2012年6月已...
- 电脑系统网站排行榜(电脑系统网址还有哪些)
-
车架号查询网站:http://www.yiparts.com/vin通过车架号查询车辆信息。新国标电动车一般是15位纯数字的车架号,如175721508069087,1757前四位是企业代码,由企业申...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
