百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

PostgreSQL技术内幕17:PG分区表(pg数据库表分区)

liuian 2025-07-06 14:04 32 浏览

0.简介

本文主要介绍PG中分区表的概念,产生分区表技术的原因,使用方式和其内部实现原理,旨在能对PG分区表技术有一个系统的说明。

1.概念介绍

分区表是数据库用于管理大量数据的一种技术,它允许将一个大表分割成多个小表,这些小表在物理上是独立的,但在逻辑上作为一个整体被查询和更新。分区表的主要优势在于提高查询性能,特别是当查询集中在少数几个分区时。此外,分区表还可以简化数据的批量删除和加载,以及将不常用的数据迁移到成本较低的存储介质上实现冷热分离。

1)主表/父表/Master Table:该表是创建子表的模板。它是一个正常的普通表,但正常情况下它并不储存任何数据。

2)子表/分区表/Child Table/Partition Table:这些表继承并属于一个主表。子表中存储所有的数据。主表与分区表属于一对多的关系,也就是说,一个主表包含多个分区表,而一个分区表只从属于一个主表

2.分区表技术产生的背景

在使用数据库过程中,随着时间的推移,每张表数据量会不断增加,造成查询速度越来越慢,在分区表之前有很多查询的技术去优化它,比如添加特殊的索引,将磁盘分区(把日志文件放到单独的磁盘分区),调整参数等等。这些优化技术都能对查询性能做出或多或少的提升,但其并没有对于表特点以及局部性的原理进行合理应用,因为对于很多应用来说,许多历史数据对于查询可能并没有太多用处,或者是某一列是特定值时是更为关系的数据,如果能够将不常用数据进行隐藏,就能大大提高查询速度,分区表就是为了解决这个问题而产生的。比如可以按照时间作为分区键进行分区将新老数据分离。

3.分区类型及使用方式

PG 10以后支持三种分区,以下都使用主流的使用方式声明式分区(还有表继承)进行说明:

1)范围(Range)分区

CREATE TABLE students (grade INTEGER) PARTITION BY RANGE(grade);
CREATE TABLE stu_fail PARTITION OF students FOR VALUES FROM (MINVALUE) TO (60);
CREATE TABLE stu_pass PARTITION OF students FOR VALUES FROM (60) TO (MAXVALUE);
 \d+  students
                                 Table "public.students"
 Column |  Type   | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 grade  | integer |           |          |         | plain   |              |
Partition key: RANGE (grade)
Partitions: stu_fail FOR VALUES FROM (MINVALUE) TO (60),
            stu_pass FOR VALUES FROM (60) TO (MAXVALUE)

\d+ stu_fail
                                 Table "public.stu_fail"
 Column |  Type   | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 grade  | integer |           |          |         | plain   |              |
Partition of: students FOR VALUES FROM (MINVALUE) TO (60)
Partition constraint: ((grade IS NOT NULL) AND (grade < 60))

可以看出,其中最大值是小于关系,不是小于等于关系。

2)列表(List)分区

列表分区明确指定根据某字段的某个具体值进行分区,默认分区(可选值)保存不属于任何指定分区的列表值。

CREATE TABLE students (status character varying(30)) PARTITION BY LIST(status);
CREATE TABLE stu_active PARTITION OF students FOR VALUES IN ('ACTIVE');
CREATE TABLE stu_exp PARTITION OF students FOR VALUES IN ('EXPIRED');
CREATE TABLE stu_others PARTITION OF students DEFAULT;

\d+  students
                                         Table "public.students"
 Column |         Type          | Collation | Nullable | Default | Storage  | Stats target | Description
--------+-----------------------+-----------+----------+---------+----------+--------------+-------------
 status | character varying(30) |           |          |         | extended |              |
Partition key: LIST (status)
Partitions: stu_active FOR VALUES IN ('ACTIVE'),
            stu_exp FOR VALUES IN ('EXPIRED'),
            stu_others DEFAULT

\d+  stu_others;
                                        Table "public.stu_others"
 Column |         Type          | Collation | Nullable | Default | Storage  | Stats target | Description
--------+-----------------------+-----------+----------+---------+----------+--------------+-------------
 status | character varying(30) |           |          |         | extended |              |
Partition of: students DEFAULT
Partition constraint: (NOT ((status IS NOT NULL) AND ((status)::text = ANY (ARRAY['ACTIVE'::character varying(30), 'EXPIRED'::character varying(30)]))))

3)哈希(Hash)分区

通过对每个分区使用取模和余数来创建hash分区,modulus指定了对N取模,而remainder指定了除完后的余数。

CREATE TABLE students (id INTEGER) PARTITION BY HASH(id);
CREATE TABLE stu_part1 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 0);
CREATE TABLE stu_part2 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 1);
CREATE TABLE stu_part3 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 2);

\d+ students;
                                 Table "public.students"
 Column |  Type   | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 id     | integer |           |          |         | plain   |              |
Partition key: HASH (id)
Partitions: stu_part1 FOR VALUES WITH (modulus 3, remainder 0),
            stu_part2 FOR VALUES WITH (modulus 3, remainder 1),
            stu_part3 FOR VALUES WITH (modulus 3, remainder 2)

\d+ stu_part1;
                                 Table "public.stu_part1"
 Column |  Type   | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 id     | integer |           |          |         | plain   |              |
Partition of: students FOR VALUES WITH (modulus 3, remainder 0)
Partition constraint: satisfies_hash_partition('16439'::oid, 3, 0, id)

PG分区还支持创建子分区:LIST-LIST,LIST-RANGE,LIST-HASH,RANGE-RANGE,RANGE-LIST,RANGE-HASH,HASH-HASH,HASH-LIST和HASH-RANGE;以及和普通表之间互相转换,DETACH PARTITION可以将分区表转换为普通表,而attach partition可以将普通表附加到分区表上。

4.实现原理

4.1 分区表创建

分区表创建相对简单,对PG来说实际是一张逻辑表对应多张物理表,下面简单看创建时其分区表相关的调用流程。

--> transformPartitionBound  
                    --> RelationGetPartitionKey
                    --> get_partition_strategy
                    --> transformPartitionBoundValue
                    --> transformPartitionRangeBounds
                        --> validateInfiniteBounds
                --> check_new_partition_bound
                --> StorePartitionBound // Update pg_class tuple of rel to store the partition bound and set relispartition to true
                --> StoreCatalogInheritance // 向系统表pg_inherits插入信息
                // 处理stmt->partspec
                --> transformPartitionSpec
                --> ComputePartitionAttrs
                --> StorePartitionKey // 向pg_partitioned_table中插入分区键等信息

4.2 分区表查询

分区表查询是要根据条件查询一定数量的子表然后进行返回,其主要分为三步:

1)识别分区表并找到所有的分区子表

/*
 * expand_inherited_tables
 *    Expand each rangetable entry that represents an inheritance set
 *    into an "append relation".  At the conclusion of this process,
 *    the "inh" flag is set in all and only those RTEs that are append
 *    relation parents.
 */
void
expand_inherited_tables(PlannerInfo *root)
{
  Index    nrtes;
  Index    rti;
  ListCell   *rl;

  /*
   * expand_inherited_rtentry may add RTEs to parse->rtable. The function is
   * expected to recursively handle any RTEs that it creates with inh=true.
   * So just scan as far as the original end of the rtable list.
   */
  nrtes = list_length(root->parse->rtable);
  rl = list_head(root->parse->rtable);
  for (rti = 1; rti <= nrtes; rti++)
  {
    RangeTblEntry *rte = (RangeTblEntry *) lfirst(rl);

    expand_inherited_rtentry(root, rte, rti);
    rl = lnext(rl);
  }
}

2)根据约束条件识别需要查询的分区,也就是分区裁剪,只读取需要的分区;

prune_append_rel_partitions
 *    Process rel's baserestrictinfo and make use of quals which can be
 *    evaluated during query planning in order to determine the minimum set
 *    of partitions which must be scanned to satisfy these quals.  Returns
 *    the matching partitions in the form of a Relids set containing the
 *    partitions' RT indexes.
 *
 * Callers must ensure that 'rel' is a partitioned table.
 */
Relids
prune_append_rel_partitions(RelOptInfo *rel)
{
  Relids    result;
  List     *clauses = rel->baserestrictinfo;
  List     *pruning_steps;
  GeneratePruningStepsContext gcontext;
  PartitionPruneContext context;
  Bitmapset  *partindexes;
  int      i;

  Assert(clauses != NIL);
  Assert(rel->part_scheme != NULL);

  /* If there are no partitions, return the empty set */
  if (rel->nparts == 0)
    return NULL;

  /*
   * Process clauses to extract pruning steps that are usable at plan time.
   * If the clauses are found to be contradictory, we can return the empty
   * set.
   */
  gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,
            &gcontext);
  if (gcontext.contradictory)
    return NULL;
  pruning_steps = gcontext.steps;

  /* Set up PartitionPruneContext */
  context.strategy = rel->part_scheme->strategy;
  context.partnatts = rel->part_scheme->partnatts;
  context.nparts = rel->nparts;
  context.boundinfo = rel->boundinfo;
  context.partcollation = rel->part_scheme->partcollation;
  context.partsupfunc = rel->part_scheme->partsupfunc;
  context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) *
                        context.partnatts *
                        list_length(pruning_steps));
  context.ppccontext = CurrentMemoryContext;

  /* These are not valid when being called from the planner */
  context.partrel = NULL;
  context.planstate = NULL;
  context.exprstates = NULL;

  /* Actual pruning happens here. */
  partindexes = get_matching_partitions(&context, pruning_steps);

  /* Add selected partitions' RT indexes to result. */
  i = -1;
  result = NULL;
  while ((i = bms_next_member(partindexes, i)) >= 0)
    result = bms_add_member(result, rel->part_rels[i]->relid);

  return result;
}

3)对结果集执行APPEND,作为最终结果输出,这和其他表append操作一致,使用ExecInitAppend和ExecAppend函数。

/* ----------------------------------------------------------------
 *     ExecAppend
 *
 *    Handles iteration over multiple subplans.
 * ----------------------------------------------------------------
 */
static TupleTableSlot *
ExecAppend(PlanState *pstate)
{
  AppendState *node = castNode(AppendState, pstate);

  if (node->as_whichplan < 0)
  {
    /*
     * If no subplan has been chosen, we must choose one before
     * proceeding.
     */
    if (node->as_whichplan == INVALID_SUBPLAN_INDEX &&
      !node->choose_next_subplan(node))
      return ExecClearTuple(node->ps.ps_ResultTupleSlot);

    /* Nothing to do if there are no matching subplans */
    else if (node->as_whichplan == NO_MATCHING_SUBPLANS)
      return ExecClearTuple(node->ps.ps_ResultTupleSlot);
  }

  for (;;)
  {
    PlanState  *subnode;
    TupleTableSlot *result;

    CHECK_FOR_INTERRUPTS();

    /*
     * figure out which subplan we are currently processing
     */
    Assert(node->as_whichplan >= 0 && node->as_whichplan < node->as_nplans);
    subnode = node->appendplans[node->as_whichplan];

    /*
     * get a tuple from the subplan
     */
    result = ExecProcNode(subnode);

    if (!TupIsNull(result))
    {
      /*
       * If the subplan gave us something then return it as-is. We do
       * NOT make use of the result slot that was set up in
       * ExecInitAppend; there's no need for it.
       */
      return result;
    }

    /* choose new subplan; if none, we're done */
    if (!node->choose_next_subplan(node))
      return ExecClearTuple(node->ps.ps_ResultTupleSlot);
  }
}

4.3 分区表写入

分区表写入分为两个阶段,一个是查找到要写入的分区,然后就是正常去做写入,下面来看查找分区的函数。

/*
 * ExecPrepareTupleRouting --- prepare for routing one tuple
 *
 * Determine the partition in which the tuple in slot is to be inserted,
 * and modify mtstate and estate to prepare for it.
 *
 * Caller must revert the estate changes after executing the insertion!
 * In mtstate, transition capture changes may also need to be reverted.
 *
 * Returns a slot holding the tuple of the partition rowtype.
 */
static TupleTableSlot *
ExecPrepareTupleRouting(ModifyTableState *mtstate,
            EState *estate,
            PartitionTupleRouting *proute,
            ResultRelInfo *targetRelInfo,
            TupleTableSlot *slot)
{
  ModifyTable *node;
  int      partidx;
  ResultRelInfo *partrel;
  HeapTuple  tuple;

  /*
   * Determine the target partition.  If ExecFindPartition does not find a
   * partition after all, it doesn't return here; otherwise, the returned
   * value is to be used as an index into the arrays for the ResultRelInfo
   * and TupleConversionMap for the partition.
   */
  partidx = ExecFindPartition(targetRelInfo,
                proute->partition_dispatch_info,
                slot,
                estate);
  Assert(partidx >= 0 && partidx < proute->num_partitions);

  /*
   * Get the ResultRelInfo corresponding to the selected partition; if not
   * yet there, initialize it.
   */
  partrel = proute->partitions[partidx];
  if (partrel == NULL)
    partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,
                    proute, estate,
                    partidx);

  /*
   * Check whether the partition is routable if we didn't yet
   *
   * Note: an UPDATE of a partition key invokes an INSERT that moves the
   * tuple to a new partition.  This check would be applied to a subplan
   * partition of such an UPDATE that is chosen as the partition to route
   * the tuple to.  The reason we do this check here rather than in
   * ExecSetupPartitionTupleRouting is to avoid aborting such an UPDATE
   * unnecessarily due to non-routable subplan partitions that may not be
   * chosen for update tuple movement after all.
   */
  if (!partrel->ri_PartitionReadyForRouting)
  {
    /* Verify the partition is a valid target for INSERT. */
    CheckValidResultRel(partrel, CMD_INSERT);

    /* Set up information needed for routing tuples to the partition. */
    ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);
  }

  /*
   * Make it look like we are inserting into the partition.
   */
  estate->es_result_relation_info = partrel;

  /* Get the heap tuple out of the given slot. */
  tuple = ExecMaterializeSlot(slot);

  /*
   * If we're capturing transition tuples, we might need to convert from the
   * partition rowtype to parent rowtype.
   */
  if (mtstate->mt_transition_capture != NULL)
  {
    if (partrel->ri_TrigDesc &&
      partrel->ri_TrigDesc->trig_insert_before_row)
    {
      /*
       * If there are any BEFORE triggers on the partition, we'll have
       * to be ready to convert their result back to tuplestore format.
       */
      mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
      mtstate->mt_transition_capture->tcs_map =
        TupConvMapForLeaf(proute, targetRelInfo, partidx);
    }
    else
    {
      /*
       * Otherwise, just remember the original unconverted tuple, to
       * avoid a needless round trip conversion.
       */
      mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;
      mtstate->mt_transition_capture->tcs_map = NULL;
    }
  }
  if (mtstate->mt_oc_transition_capture != NULL)
  {
    mtstate->mt_oc_transition_capture->tcs_map =
      TupConvMapForLeaf(proute, targetRelInfo, partidx);
  }

  /*
   * Convert the tuple, if necessary.
   */
  ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
                tuple,
                proute->partition_tuple_slot,
                &slot);

  /* Initialize information needed to handle ON CONFLICT DO UPDATE. */
  Assert(mtstate != NULL);
  node = (ModifyTable *) mtstate->ps.plan;
  if (node->onConflictAction == ONCONFLICT_UPDATE)
  {
    Assert(mtstate->mt_existing != NULL);
    ExecSetSlotDescriptor(mtstate->mt_existing,
                RelationGetDescr(partrel->ri_RelationDesc));
    Assert(mtstate->mt_conflproj != NULL);
    ExecSetSlotDescriptor(mtstate->mt_conflproj,
                partrel->ri_onConflict->oc_ProjTupdesc);
  }

  return slot;
}

4.4 分区表删除

分区表的删除即为先删除其分区,然后整体删除。

相关推荐

Python中的列表详解及示例_python列表讲解

艾瑞巴蒂干货来了,数据列表,骚话没有直接来吧列表(List)是Python中最基本、最常用的数据结构之一,它是一个有序的可变集合,可以包含任意类型的元素。列表的基本特性有序集合:元素按插入顺序存储可变...

PowerShell一次性替换多个文件的名称

告别繁琐的文件重命名,使用PowerShell语言批量修改文件夹中的文件名,让您轻松完成重命名任务在日常工作中,我们经常需要对大量文件进行重命名,以便更好地管理和组织。之前,我们曾介绍过使用Pytho...

小白必看!Python 六大数据类型增删改查秘籍,附超详细代码解析

在Python中,数据类型可分为可变类型(如列表、字典、集合)和不可变类型(如字符串、元组、数值)。下面针对不同数据类型详细讲解其增删改查操作,并给出代码示例、输出结果及分析总结。1.列表(Li...

python数据容器之列表、元组、字符串

数据容器分为5类,分别是:列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)list#字面量[元素1,元素2,元素3,……]#定义变量变量名称=[元素1,元素...

python列表(List)必会的13个核心技巧(附实用方法)

列表(List)是Python入门的关键步骤,因为它是编程中最常用的数据结构之一。以下是高效掌握列表的核心技巧和实用方法:一、理解列表的本质可变有序集合:可随时修改内容,保持元素顺序混合类型:一个列表...

如何利用python批量修改文件名_python如何对文件进行批量命名

很多语言都可以做到批量修改文件名,今天我就给大家接受一下Python的方法,首选上需求。图片中有10个txt文件,现在我需要在这些文件名的前面全部加一个“学生”,可以吗?见证奇迹的时刻到了。我是怎么做...

Python中使用re模块实现正则表达式的替换字符串操作

#编程语言#我是"学海无涯自学不惜!",关注我,一同学习简单易懂的Python编程。0基础学python(83)Python中,导入re模块后还可以进行字符串的替换操作,就是sub()...

python列表十大常见问题,你遇到第几个?

Python列表常见问题及解决方案1.修改列表时的常见陷阱问题:在遍历时修改列表#错误做法:在遍历时删除元素会导致意外结果numbers=[1,2,3,4,5,6]forn...

python入门007:编辑列表_python列表怎么写入文件

一、列表的编辑操作列表创建后,随着程序的运行,可以通过对列表元素的增删改操作来编辑列表。1、修改列表元素的值修改列表元素的操作方法与访问列表元素的方法类似。例如,要修改列表元素的值,先指定列表及元素...

Python教程:在python中修改元组详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中修改元组详解》。本知识点主要内容有:在Python中直接使用赋值运算符“=”给元组重新赋值、在Python中使用加赋值运...

Python列表(List)一文全掌握:核心知识点+20实战练习题

Python列表(List)知识点教程一、列表的定义与特性定义:列表是可变的有序集合,用方括号[]定义,元素用逗号分隔。list1=[1,"apple",3.14]lis...

Python教程-列表复制_python对列表进行复制

作为软件开发者,我们总是努力编写干净、简洁、高效的代码。Python列表是一种多功能的数据结构,它允许你存储一个项目的集合。在Python中,列表是可变的,这意味着你可以在创建一个列表后改变它的...

Python入门学习教程:第 6 章 列表

6.1什么是列表?在Python中,列表(List)是一种用于存储多个元素的有序集合,它是最常用的数据结构之一。列表中的元素可以是不同的数据类型,如整数、字符串、浮点数,甚至可以是另一个列表。列...

Python列表、元组、字典和集合_python中的列表元组和字典

Python中的列表(List)、元组(Tuple)、字典(Dict)和集合(Set)是四种最常用的核心数据结构。掌握它们的基础操作只是第一步,真正发挥威力的是那些高级用法和技巧。首先我们先看一下这...

学习编程第167天 python编程 使用format方法灵活替换字符串

今天学习的是刘金玉老师零基础Python教程第51期,主要内容是python编程使用format方法灵活替换字符串。一、format方法(一)format方法是字符串自带的方法,使用的format方法...