Agent实战-JSON结构化智能
liuian 2024-12-08 16:20 19 浏览
本文译自JSON agents with Ollama & LangChain一文,以电影推荐助手为实践案例,讲解了博主在工程实践中,如何基于LangChain框架和本地LLM优雅实现了Json结构化的智能体。系列合集,点击「链接」查看
随着AI应用工程的飞速发展,我们不难发现为大语言模型(LLMs)提供额外工具能大大增强其功能。
举例来说,GPT3.5版本通过集成Bing搜索和Python解释器实现了能力的跃迁。GPTs则直接将api调用作为工具进行了集成,LLM会决定是直接作出回应,还是先调用它提供的工具。这些工具不仅限于获取额外信息,它们还能发挥其他功能,比如帮用户订餐。
智能代理LLM与图数据库的交互示意图
尽管OpenAI已经用它的专门模型让我们享受了工具使用的便捷,大多数其他LLM在函数调用和工具使用方面仍不及OpenAI的水平。我尝试了Ollama上的多数模型,大多数在持续生成可用于代理的预定义结构化输出方面表现不佳。另一方面,也有一些模型是专为函数调用优化的。但这些模型要么是采用难以理解的自定义提示架构,要么除了函数调用别无它用。
今天我们要探讨的是如何实施一个基于JSON格式的LLM智能代理。
语义层的工具
LangChain文档中的示例(JSON代理,HuggingFace示例)使用单字符串输入的工具。但因为语义层的工具需要稍微复杂一些的输入,我需要进行一些深入研究。下面是推荐工具的示例输入:
all_genres = [
"Action",
"Adventure",
"Animation",
"Children",
"Comedy",
"Crime",
"Documentary",
"Drama",
"Fantasy",
"Film-Noir",
"Horror",
"IMAX",
"Musical",
"Mystery",
"Romance",
"Sci-Fi",
"Thriller",
"War",
"Western",
]
class RecommenderInput(BaseModel):
movie: Optional[str] = Field(description="用来推荐的电影")
genre: Optional[str] = Field(
description=("用于推荐的电影类型。可选项有:" f"{all_genres}")
)
推荐工具有两个可选的输入项:电影和类型,并且我们为类型提供了一系列可选的值。虽然这些输入项并不特别复杂,但比单一字符串输入要高级一些,因此实现起来也略有不同。
基于JSON的LLM智能代理提示
在我的实现中,我深受现有的hwchase17/react-json提示的启发,这一提示可以在LangChain hub中找到。提示使用以下系统消息:
尽你所能回答下面的问题。你可以使用以下工具:
{tools}
你可以通过指定一个JSON块来使用工具。
具体而言,这个JSON应该包含一个`action`键(用来指定要使用的工具名称)和一个`action_input`键(工具的输入在这里)。
"action"键里的值应当仅为:{tool_names}
$JSON_BLOB应该只包含单一的动作,请不要返回一个列表包含多个动作。以下是一个有效$JSON_BLOB的示例:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
每次回答都要遵循以下格式:
Question: 你需要回答的问题
Thought: 你应该在思考要做什么
Action:
```
$JSON_BLOB
```
Observation: 动作的结果
...(这种思考/动作/观察的过程可以重复N次)
Thought: 我现在知道最终答案了
Final Answer: 对原本提问的最终回答
开始!请记住每次回答时都要精确使用`Final Answer`这个词。
提示的开始部分通过定义可用的工具来设定,后面我们将深入讨论。提示中最关键的部分是对LLM输出预期的指示。当LLM需要使用工具时,它应该使用以下JSON结构:
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
这就是为什么它被称作基于JSON的代理:我们指导LLM在希望使用任何可用工具时生成一个JSON。然而,这只是输出定义的一小部分。完整的输出应遵循以下结构:
Thought: 你应该在思考要做什么
Action:
```
$JSON_BLOB
```
Observation: 动作的结果
...(这可以重复N次)
Final Answer: 对原本提问的最终回答
LLM在输出中总是需要解释它正在做什么,即"Thought"部分。当它想要使用任何可用的工具时,它应以JSON块的形式提供动作输入。"Observation"部分留给工具的输出,而当代理决定可以回答用户提出的问题时,它应使用"Final Answer"关键词。以下是电影智能代理使用此结构的一个实例。
在这个例子中,我们让代理推荐一部喜剧片。由于代理的一个可用工具是推荐工具,它决定利用推荐工具,并提供了用JSON写的输入语法。幸运的是,LangChain有一个内置的JSON智能代理输出解析器,我们无需操心其实现细节。然后,LLM从工具得到回应,并在提示语中作为观察结果使用。由于工具提供了所有必要的信息,LLM认为已经有了足够的信息来构建可以交给用户的最终答案。
我注意到对Mixtral的提示工程经常失败,它不总是只在需要工具时使用JSON语法。在我的测试中,当它不想使用任何工具时,有时它会使用如下的JSON动作输入:
{{
"action": Null,
"action_input": ""
}}
如果动作为null或类似的,LangChain的输出解析函数并不会忽视这个动作,而是会报错说没有定义null这个工具。我尝试对此进行提示修改,但没能一直做到。因此,我决定增加一个假设性的闲聊工具,以便用户想要进行闲聊时代理可以调用。
response = (
"创建一个最终回答它们是否有任何关于电影或演员的问题"
)
class SmalltalkInput(BaseModel):
query: Optional[str] = Field(description="用户提问")
class SmalltalkTool(BaseTool):
name = "Smalltalk"
description = "当用户打招呼或想要闲聊时适用"
args_schema: Type[BaseModel] = SmalltalkInput
def _run(
self,
query: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""使用该工具。"""
return response
如此,代理在用户打招呼时可以决定使用一个假的Smalltalk工具,我们再也不会因为解析null或者缺失工具名而遇到问题了。
这样的临时弥补方法很管用,所以我选择留用它。像之前说的,大多数模型并未被训练以产生操作输入或者在不需要动作时生成文本,因此我们必须利用现有资源。至于操控模型以便它只在有必要时产生JSON动作输入,有时是成功的,有时则依赖情况而定。但像smalltalk工具这样给它提供一个备选项,可以避免出现异常。
在系统提示中定义工具输入
如前所述,我需要弄清楚如何定义略微复杂的工具输入,这样LLM才能正确解释它们。好笑的是,在我实现了一个自定义功能后,我找到了一个现成的LangChain功能,这个功能可以将自定义的Pydantic工具输入定义转换成Mixtral能识别的JSON对象。
from langchain.tools.render import render_text_description_and_args
tools = [RecommenderTool(), InformationTool(), Smalltalk()]
tool_input = render_text_description_and_args(tools)
print(tool_input)
它产生了以下的字符串描述:
"Recommender":"当你需要推荐一部电影时使用",
"args":{
{
"movie":{
{
"title":"Movie",
"description":"用于推荐的电影",
"type":"string"
}
},
"genre":{
{
"title":"Genre",
"description":"用于推荐的电影类型。可选项有:['Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'IMAX', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']",
"type":"string"
}
}
}
},
"Information":"当你需要回答关于各种演员或电影问题时使用",
"args":{
{
"entity":{
{
"title":"Entity",
"description":"问题中提到的电影或人名",
"type":"string"
}
},
"entity_type":{
{
"title":"Entity Type",
"description":"实体的类型。可选项为'movie'或'person'",
"type":"string"
}
}
}
},
"Smalltalk":"当用户打招呼或想要闲聊时使用",
"args":{
{
"query":{
{
"title":"Query",
"description":"用户提问",
"type":"string"
}
}
}
}
我们只需将这些工具描述复制粘贴到系统提示中,Mixtral就能正确使用这些提前定义的工具,这非常方便。
结论
为实现这个基于JSON的智能代理,Harrison Chase和LangChain团队已经完成了大部分工作,我对此表示由衷的感谢。我只需要把碎片拼凑起来即可。正如所说,不要期待与GPT-4同等水平的性能。然而,我相信像Mixtral这样更强大的开源LLMs可以立即当做智能代理使用(比起GPT-4来可能需要更多的异常处理)。我期待未来会有更多开源LLMs被优化以作为智能代理使用。
References
- Langchain模板:https://github.com/langchain-ai/langchain/tree/master/templates/neo4j-semantic-ollama?ref=blog.langchain.dev
- Jupyter笔记本版本:https://github.com/tomasonjo/blogs/blob/master/llm/ollama_semantic_layer.ipynb?ref=blog.langchain.dev
相关推荐
- 2023年最新微信小程序抓包教程(微信小程序 抓包)
-
声明:本公众号大部分文章来自作者日常学习笔记,部分文章经作者授权及其他公众号白名单转载。未经授权严禁转载。如需转载,请联系开百。请不要利用文章中的相关技术从事非法测试。由此产生的任何不良后果与文...
- 测试人员必看的软件测试面试文档(软件测试面试怎么说)
-
前言又到了毕业季,我们将会迎来许多需要面试的小伙伴,在这里呢笔者给从事软件测试的小伙伴准备了一份顶级的面试文档。1、什么是bug?bug由哪些字段(要素)组成?1)将在电脑系统或程序中,隐藏着的...
- 复活,视频号一键下载,有手就会,长期更新(2023-12-21)
-
视频号下载的话题,也算是流量密码了。但也是比较麻烦的问题,频频失效不说,使用方法也难以入手。今天,奶酪就来讲讲视频号下载的新方案,更关键的是,它们有手就会有用,最后一个方法万能。实测2023-12-...
- 新款HTTP代理抓包工具Proxyman(界面美观、功能强大)
-
不论是普通的前后端开发人员,还是做爬虫、逆向的爬虫工程师和安全逆向工程,必不可少会使用的一种工具就是HTTP抓包工具。说到抓包工具,脱口而出的肯定是浏览器F12开发者调试界面、Charles(青花瓷)...
- 使用Charles工具对手机进行HTTPS抓包
-
本次用到的工具:Charles、雷电模拟器。比较常用的抓包工具有fiddler和Charles,今天讲Charles如何对手机端的HTTS包进行抓包。fiddler抓包工具不做讲解,网上有很多fidd...
- 苹果手机下载 TikTok 旧版本安装包教程
-
目前苹果手机能在国内免拔卡使用的TikTok版本只有21.1.0版本,而AppStore是高于21.1.0版本,本次教程就是解决如何下载TikTok旧版本安装包。前期准备准备美区...
- 【0基础学爬虫】爬虫基础之抓包工具的使用
-
大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学爬...
- 防止应用调试分析IP被扫描加固实战教程
-
防止应用调试分析IP被扫描加固实战教程一、概述在当今数字化时代,应用程序的安全性已成为开发者关注的焦点。特别是在应用调试过程中,保护应用的网络安全显得尤为重要。为了防止应用调试过程中IP被扫描和潜在的...
- 一文了解 Telerik Test Studio 测试神器
-
1.简介TelerikTestStudio(以下称TestStudio)是一个易于使用的自动化测试工具,可用于Web、WPF应用的界面功能测试,也可以用于API测试,以及负载和性能测试。Te...
- HLS实战之Wireshark抓包分析(wireshark抓包总结)
-
0.引言Wireshark(前称Ethereal)是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接...
- 信息安全之HTTPS协议详解(加密方式、证书原理、中间人攻击 )
-
HTTPS协议详解(加密方式、证书原理、中间人攻击)HTTPS协议的加密方式有哪些?HTTPS证书的原理是什么?如何防止中间人攻击?一:HTTPS基本介绍:1.HTTPS是什么:HTTPS也是一个...
- Fiddler 怎么抓取手机APP:抖音、小程序、小红书数据接口
-
使用Fiddler抓取移动应用程序(APP)的数据接口需要进行以下步骤:首先,确保手机与计算机连接在同一网络下。在计算机上安装Fiddler工具,并打开它。将手机的代理设置为Fiddler代理。具体方...
- python爬虫教程:教你通过 Fiddler 进行手机抓包
-
今天要说说怎么在我们的手机抓包有时候我们想对请求的数据或者响应的数据进行篡改怎么做呢?我们经常在用的手机手机里面的数据怎么对它抓包呢?那么...接下来就是学习python的正确姿势我们要用到一款强...
- Fiddler入门教程全家桶,建议收藏
-
学习Fiddler工具之前,我们先了解一下Fiddler工具的特点,Fiddler能做什么?如何使用Fidder捕获数据包、修改请求、模拟客户端向服务端发送请求、实施越权的安全性测试等相关知识。本章节...
- fiddler如何抓取https请求实现手机抓包(100%成功解决)
-
一、HTTP协议和HTTPS协议。(1)HTTPS协议=HTTP协议+SSL协议,默认端口:443(2)HTTP协议(HyperTextTransferProtocol):超文本传输协议。默认...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)