Loki日志系统取代ELK?(日志系统 elk)
liuian 2025-06-24 15:19 31 浏览
一、Loki是什么?
Loki是由Grafana Labs开源的一个水平可扩展、高可用性,多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中,处理海量日志的问题。Loki采用了分布式的架构,并且与Prometheus、Grafana密切集成,可以快速地处理大规模的日志数据。该项目受 Prometheus 启发,官方的介绍是:Like Prometheus,But For Logs.。
与其他日志聚合系统相比, Loki 具有下面的一些特性:
- 不对日志进行全文索引。通过存储压缩非结构化日志和仅索引元数据,Loki的存储更加轻量,操作更加简单,更加节省成本。
- 通过使用与 Prometheus 相同的标签记录流对日志进行索引和分组,这使得日志的扩展和操作效率更高。
- 天然适合存储Kubernetes Pod 日志,Pod 标签之类的元数据会被自动处理,特点适合云云原生场景的应用日志处理。
- Grafana Labs出品,Grafana原生对Loki的支持就非常好。
二、Loki架构和功能
Loki 的架构非常简单,主要由以下 3 个部分组成:
- Loki:负责存储日志和处理查询。
- Promtail:日志收集的代理,负责在各端收集日志并将其发送给 Loki 。
- Grafana:用于日志搜索的UI 展示。
Loki 使用与 Prometheus 相同的服务发现和标签重新标记库,编写了 Pormtail,在 Kubernetes 中 Promtail 以 DaemonSet 方式运行在每个节点中,通过 Kubernetes API 得到日志的正确元数据,并将它们发送到 Loki。
也正是因为这个原因,通过这些标签,既可以查询日志的内容,也可以查询到监控的内容,这两种查询被很好的兼容,节省了分别存储相关日志和监控数据的成本,也减少了查询的切换成本。
整体来说可以把Loki的功能总结如下:
- 日志收集:Loki可以接收来自不同应用程序、主机和容器的日志数据。
- 日志存储:Loki使用可扩展的分布式存储后端存储日志数据,包括本地存储和云存储。
- 日志查询:Loki提供了一个高效的查询语言,可以快速地搜索和过滤日志数据。
- 日志索引:Loki使用标签索引和压缩算法对日志数据进行索引,可以大大减少存储空间和查询时间。
- 日志警报:Loki可以根据日志数据中的条件触发警报,并将警报发送到警报通道。
可以看到,作为一个日志处理系统,从收集、存储、查询、告警支持都是比较全面的,配合Grafana也能够比较好实现可视化,相关组件也比较简单。
三、Loki与ELK的优劣势对比?
ELK是大规模日志解决方案中的佼佼者,所以说到Loki,免不了要拿来跟ELK做个对比。两者都是日志解决方案,有相似之处,也有诸多不同。
- 架构
ELK(Elasticsearch、Logstash、Kibana)架构中Logstash用于日志收集和处理,Elasticsearch用于存储和索引,Kibana用于可视化和查询。而Loki则采用了分布式架构,将日志数据存储在多个节点上,Promtail进行日志收集,可视化依赖于Grafana。
- 存储
ELK使用Elasticsearch作为存储和索引引擎,Elasticsearch需要使用大量的硬盘空间和内存。而Loki使用了紧凑的索引和压缩算法,可以大大减少存储空间。
- 查询
ELK使用Lucene作为查询引擎,可以快速地搜索和过滤大规模的日志数据。但是在数据量过大和查询复杂度高一些的情况下,查询速度会变慢。Loki使用自己的查询语言,查询的场景一般也比较简单,可以快速地搜索和过滤日志数据。
- 部署
ELK的部署比较复杂,需要安装和配置多个组件。而Loki则采用了单一二进制文件的方式,部署比较简单。
3.1、Loki的优劣势
3.1.1、Loki优势
- 轻量级:相比ELK,Loki更加轻量级,因为它不需要一个单独的Elasticsearch集群来存储和索引日志数据。Loki具有较低的硬件要求,可以在较小的硬件上运行,例如使用少量内存和CPU。
- 高度可扩展性:Loki可以通过添加更多的Loki实例来实现水平扩展,这使得它更容易处理大量的日志数据。
- 简化的存储架构:Loki将日志数据存储在一个单一的列式存储引擎中,这使得它更容易维护和管理。
- 支持日志标签:Loki可以使用标签来过滤和查询日志数据,这使得它更加灵活。
- 直接支持Prometheus:Loki与Prometheus深度集成,这使得在Prometheus查询中使用Loki日志数据更加容易。
- 可伸缩性:Loki具有更好的可伸缩性,可以轻松地添加和删除节点以适应数据量的变化,而ELK需要更多的配置和管理工作来保持可伸缩性。
3.1.2、Loki的劣势
- 较少的可视化选项:Loki的可视化选项相对较少,因为它是一个相对较新的日志管理和分析工具。
- 学习曲线较陡峭:Loki使用的是自己的查询语言LokiQL,这需要一定的学习曲线。
- 需要额外的组件:虽然Loki本身是一个相对较小的组件,但它需要配合Promtail等其他组件来实现完整的日志管理和分析解决方案。
3.2、ELK的优劣势
3.2.1、ELK优势
- 成熟的生态系统:ELK已经有了一个成熟的生态系统,并且已经被广泛地使用和测试。
- 多样化的可视化选项:ELK提供了各种各样的可视化选项,包括基于时间序列的图表、热力图、地图等等。
- 丰富的插件库:ELK有丰富的插件库,可以方便地扩展其功能。
- 易于学习:ELK使用的是标准的查询语言,如Lucene查询语法和Elasticsearch查询DSL,这使得它相对容易学习。
3.2.2、ELK的劣势
- 相对重量级:ELK需要一个单独的Elasticsearch集群来存储和索引日志数据,这使得它相对较重。
- 复杂的存储架构:ELK使用的是分布式存储引擎,这使得它的存储架构相对复杂。
- 相对复杂的部相对复杂的部署和管理:ELK需要安装和配置多个组件,例如Elasticsearch、Logstash和Kibana,这使得它的部署和管理相对复杂。
- 较高的硬件要求:由于ELK需要处理大量的日志数据,因此需要大量的存储和处理能力,这可能需要更高的硬件要求和更大的部署成本。
总体而言,Loki和ELK都是优秀的日志解决方案,适合不同的使用场景。Loki相对轻量级,具有较高的可扩展性和简化的存储架构,但需要额外的组件和有一定的学习曲线。ELK则具有丰富的可视化选项和插件库,易于学习,但相对重量级,需要复杂的存储架构和较高的硬件要求,部署和管理也比较复杂。
具体如何选择取决于具体场景,若是数据量适中,数据属于时序类,如应用程序日志和基础设施指标,并且应用使用kubernetes Pod形式部署,则选择Loki比较合适;而ELK则适合更大的数据集和更复杂的数据处理需求,以及更多其他组件的日志收集场景。
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)