Python开发必备:自定义JSON编码器完全指南
liuian 2025-06-12 14:11 71 浏览
在现代软件开发中,数据序列化是一个至关重要的技术环节,它负责将复杂的程序对象转换为可传输和存储的格式。JSON作为最广泛使用的数据交换格式,在Web服务、API接口和数据持久化中发挥着核心作用。然而,Python标准库中的JSON模块仅支持基本数据类型的序列化,面对复杂的自定义对象时往往力不从心。
基本原理与挑战
JSON序列化本质上是一个将内存中的对象表示转换为字符串格式的过程。Python的标准json模块基于递归下降的方式处理数据结构,它能够自动识别并序列化字典、列表、字符串、数字、布尔值和None等基本类型。这种机制的核心在于类型检测和格式转换,通过遍历对象的内部结构来生成对应的JSON表示。
当面对自定义类实例、日期时间对象、集合类型或其他复杂数据结构时,标准JSON模块会抛出TypeError异常。这是因为JSON规范本身只定义了有限的数据类型,无法直接表示Python中丰富的对象类型。解决这一挑战的关键在于建立对象到JSON表示的映射关系,将复杂对象的内部状态提取出来,转换为JSON支持的基本类型。
自定义编码器实现
实现自定义JSON编码器的核心方法是继承json.JSONEncoder类并重写其default方法。这个方法在遇到无法序列化的对象时被调用,可以提供自定义的序列化逻辑。
下面的实现展示了一个完整的自定义编码器,能够处理日期时间对象、集合类型、自定义类实例等多种复杂情况。
import json
import datetime
from decimal import Decimal
from dataclasses import dataclass
class CustomJSONEncoder(json.JSONEncoder):
"""
自定义JSON编码器,支持多种复杂数据类型的序列化
处理日期时间、集合、自定义对象等类型
"""
def default(self, obj):
# 处理日期时间对象
if isinstance(obj, datetime.datetime):
return {
'__type__': 'datetime',
'value': obj.isoformat()
}
if isinstance(obj, datetime.date):
return {
'__type__': 'date',
'value': obj.isoformat()
}
# 处理集合类型
if isinstance(obj, set):
return {
'__type__': 'set',
'value': list(obj)
}
if isinstance(obj, tuple):
return {
'__type__': 'tuple',
'value': list(obj)
}
# 处理Decimal类型
if isinstance(obj, Decimal):
return {
'__type__': 'decimal',
'value': str(obj)
}
# 处理自定义对象
if hasattr(obj, '__dict__'):
return {
'__type__': 'custom_object',
'__class__': obj.__class__.__name__,
'attributes': obj.__dict__
}
# 处理dataclass对象
if hasattr(obj, '__dataclass_fields__'):
return {
'__type__': 'dataclass',
'__class__': obj.__class__.__name__,
'fields': {field.name: getattr(obj, field.name)
for field in obj.__dataclass_fields__.values()}
}
return super().default(obj)
# 定义测试类
@dataclass
class Person:
name: str
age: int
email: str
class Product:
def __init__(self, name, price, tags):
self.name = name
self.price = price
self.tags = tags
self.created_at = datetime.datetime.now()
# 创建测试数据
test_data = {
'person': Person('张三', 30, 'zhangsan@example.com'),
'product': Product('智能手机', Decimal('2999.99'), {'电子产品', '通讯设备'}),
'timestamp': datetime.datetime.now(),
'numbers': (1, 2, 3, 4, 5)
}
# 使用自定义编码器进行序列化
json_string = json.dumps(test_data, cls=CustomJSONEncoder, indent=2, ensure_ascii=False)
print("序列化结果:")
print(json_string)
运行结果:
序列化结果:
{
"person": {
"__type__": "custom_object",
"__class__": "Person",
"attributes": {
"name": "张三",
"age": 30,
"email": "zhangsan@example.com"
}
},
"product": {
"__type__": "custom_object",
"__class__": "Product",
"attributes": {
"name": "智能手机",
"price": {
"__type__": "decimal",
"value": "2999.99"
},
"tags": {
"__type__": "set",
"value": [
"电子产品",
"通讯设备"
]
},
"created_at": {
"__type__": "datetime",
"value": "2025-06-08T12:59:16.355264"
}
}
},
"timestamp": {
"__type__": "datetime",
"value": "2025-06-08T12:59:16.355270"
},
"numbers": [
1,
2,
3,
4,
5
]
}
高级编码器
为了构建更加强大的序列化系统,需要实现循环引用检测、深度限制和选择性序列化等高级功能。
下面的实现展示了一个功能完整的高级编码器,提供了生产环境所需的各种特性。
import datetime
import json
class AdvancedJSONEncoder(json.JSONEncoder):
"""
高级JSON编码器,支持循环引用检测、深度限制等功能
"""
def __init__(self, *args, **kwargs):
self.max_depth = kwargs.pop('max_depth', 10)
self.skip_private = kwargs.pop('skip_private', True)
super().__init__(*args, **kwargs)
self._obj_tracker = set()
self._current_depth = 0
def encode(self, obj):
self._obj_tracker.clear()
self._current_depth = 0
return super().encode(obj)
def default(self, obj):
# 深度检查
if self._current_depth > self.max_depth:
return f"<深度超限>"
# 循环引用检查
obj_id = id(obj)
if obj_id in self._obj_tracker:
return f"<循环引用: {type(obj).__name__}>"
self._obj_tracker.add(obj_id)
self._current_depth += 1
try:
# 处理日期时间
if isinstance(obj, datetime.datetime):
return {'__type__': 'datetime', 'value': obj.isoformat()}
# 处理自定义对象
if hasattr(obj, '__dict__'):
attributes = {}
for key, value in obj.__dict__.items():
if self.skip_private and key.startswith('_'):
continue
if not callable(value):
attributes[key] = value
return {
'__type__': 'custom_object',
'__class__': obj.__class__.__name__,
'attributes': attributes
}
return str(obj)
finally:
self._obj_tracker.discard(obj_id)
self._current_depth -= 1
# 测试高级编码器
class Person:
def __init__(self, name, age, email):
self.name = name
self.age = age
self.email = email
self._internal_id = "person_001"
class Department:
def __init__(self, name):
self.name = name
self.employees = []
self._internal_id = "dept_001"
def add_employee(self, employee):
self.employees.append(employee)
dept = Department("技术部")
person = Person("李四", 25, "lisi@example.com")
dept.add_employee(person)
encoder = AdvancedJSONEncoder(indent=2, ensure_ascii=False, max_depth=5, skip_private=True)
result = encoder.encode(dept)
print("高级编码器结果:")
print(result)
运行结果:
高级编码器结果:
{
"__type__": "custom_object",
"__class__": "Department",
"attributes": {
"name": "技术部",
"employees": [
{
"__type__": "custom_object",
"__class__": "Person",
"attributes": {
"name": "李四",
"age": 25,
"email": "lisi@example.com"
}
}
]
}
}
反序列化机制实现
完整的序列化解决方案还需要支持从JSON到对象的反向转换。通过实现自定义的object_hook函数,可以在JSON解析过程中识别特殊的类型标记,并执行相应的对象重构逻辑。
import datetime
import json
from decimal import Decimal
class CustomJSONEncoder(json.JSONEncoder):
"""
自定义JSON编码器,支持多种复杂数据类型的序列化
处理日期时间、集合、自定义对象等类型
"""
def default(self, obj):
# 处理日期时间对象
if isinstance(obj, datetime.datetime):
return {
'__type__': 'datetime',
'value': obj.isoformat()
}
if isinstance(obj, datetime.date):
return {
'__type__': 'date',
'value': obj.isoformat()
}
# 处理集合类型
if isinstance(obj, set):
return {
'__type__': 'set',
'value': list(obj)
}
if isinstance(obj, tuple):
return {
'__type__': 'tuple',
'value': list(obj)
}
# 处理Decimal类型
if isinstance(obj, Decimal):
return {
'__type__': 'decimal',
'value': str(obj)
}
# 处理自定义对象
if hasattr(obj, '__dict__'):
return {
'__type__': 'custom_object',
'__class__': obj.__class__.__name__,
'attributes': obj.__dict__
}
# 处理dataclass对象
if hasattr(obj, '__dataclass_fields__'):
return {
'__type__': 'dataclass',
'__class__': obj.__class__.__name__,
'fields': {field.name: getattr(obj, field.name)
for field in obj.__dataclass_fields__.values()}
}
return super().default(obj)
class JSONDecoder:
"""
自定义JSON解码器,支持对象反序列化
"""
def __init__(self):
self.type_handlers = {
'datetime': self._decode_datetime,
'date': self._decode_date,
'set': self._decode_set,
'tuple': self._decode_tuple,
'decimal': self._decode_decimal
}
def decode(self, json_string):
return json.loads(json_string, object_hook=self._object_hook)
def _object_hook(self, obj):
if '__type__' in obj:
type_name = obj['__type__']
if type_name in self.type_handlers:
return self.type_handlers[type_name](obj)
return obj
def _decode_datetime(self, obj):
return datetime.datetime.fromisoformat(obj['value'])
def _decode_date(self, obj):
return datetime.date.fromisoformat(obj['value'])
def _decode_set(self, obj):
return set(obj['value'])
def _decode_tuple(self, obj):
return tuple(obj['value'])
def _decode_decimal(self, obj):
return Decimal(obj['value'])
# 测试完整的序列化和反序列化
original_data = {
'timestamp': datetime.datetime.now(),
'price': Decimal('99.99'),
'tags': {'python', 'json', 'serialization'},
'coordinates': (10, 20, 30)
}
# 序列化
json_data = json.dumps(original_data, cls=CustomJSONEncoder)
print("序列化:", json_data)
# 反序列化
decoder = JSONDecoder()
restored_data = decoder.decode(json_data)
print("反序列化成功,时间类型:", type(restored_data['timestamp']))
运行结果:
序列化: {"timestamp": {"__type__": "datetime", "value": "2025-06-08T13:03:42.075846"}, "price": {"__type__": "decimal", "value": "99.99"}, "tags": {"__type__": "set", "value": ["json", "serialization", "python"]}, "coordinates": [10, 20, 30]}
反序列化成功,时间类型: <class 'datetime.datetime'>
总结
自定义JSON编码器为Python应用程序提供了强大的数据序列化能力。通过扩展标准库的功能,我们能够处理复杂的对象结构,实现完整的数据持久化和传输方案。在实际应用中,需要注意安全性考虑,建立白名单机制来限制可重建的类型。同时要考虑性能优化,避免过度复杂的序列化逻辑影响系统效率。合理使用自定义JSON编码器,能够显著提升系统的数据处理能力,为构建可扩展的现代应用奠定坚实基础。通过掌握这些技术,开发者可以更好地应对复杂的数据序列化需求,构建高质量的Python应用程序。
相关推荐
- 教你把多个视频合并成一个视频的方法
-
一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...
- 零代码编程:用kimichat合并一个文件夹下的多个文件
-
一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...
- Java APT_java APT 生成代码
-
JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...
- Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器
-
在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...
- 挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?
-
如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...
- 五年后,谷歌还在全力以赴发展 Kotlin
-
作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...
- kotlin和java开发哪个好,优缺点对比
-
Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...
- 移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?
-
掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...
- 颜值非常高的XShell替代工具Termora,不一样的使用体验!
-
Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...
- 预处理的底层原理和预处理编译运行异常的解决方案
-
若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...
- 为“架构”再建个模:如何用代码描述软件架构?
-
在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...
- 深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型
-
2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...
- 比分网开发技术栈与功能详解_比分网有哪些
-
一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...
- 设计模式之-生成器_一键生成设计
-
一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...
- 构建第一个 Kotlin Android 应用_kotlin简介
-
第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)