Python JSON处理黑魔法:demjson库的隐藏技巧大公开
liuian 2025-05-30 16:04 25 浏览
对话实录
小白:(抓狂)这个 JSON 里有注释和单引号,标准库解析不了!
专家:(掏出魔杖)用 demjson库,专治各种不规范 JSON!
专家解释为什么使用demjson?
demjson的一些优点:
它适用于没有内置JSON的旧Python版本;
它通常具有更好的错误处理和“lint”检查功能;
每当可能出现溢出或精度损失时,它将自动使用Python Decimal(bigfoat)类,而不是浮点数。
它可以正确处理不同的Unicode编码,包括ASCII。它将根据编码自动调整何时使用转义符。
它生成更保守的JSON,例如转义Unicode格式的控制字符或行终止符,这将提高数据的可移植性。
在非严格模式下,它还可以处理稍微不一致的输入,这些输入更多的是JavaScript而不是JSON(例如允许注释)。
在转换过程中,它支持更广泛的Python类型集。
demjson 基础五连击
1. 安装神器
pip install demjson
但因为不同python版本问题,有可能会报错如下:
虽然demjson 2.2.4版本兼容了python2和python3,但是安装环境python3时,有一部分代码需要做转换,而setuptools从版本58.0.0开始不再支持2to3的builds,所以导致 demjson 2.2.4安装后报错。
通过降低setuptools版本即可解决,比如pip install steuptools==57.5.0安装低版本,然后在执行安装Demjson。
2. 函数介绍
函数 | 描述 |
demjson.encode() | 将Python对象编码成 JSON字符串 |
demjson.decode() | 将已编码的 JSON 字符串解码为Python对象 |
demjson.encode_to_file() | 将Python对象编码成 JSON文件 |
demjson.decode_file() | 将JSON文件解码为Python对象 |
3. 宽松解析
import demjson
# 包含注释和单引号的JSON
bad_json = """{
// 这是注释
'name': '小明',
"age": 18
}"""
data = demjson.decode(bad_json) # → {'name':'小明','age':18}
专家提醒:demjson 比标准 json 库更宽容!在实际场景中,很多从配置文件、前端传过来的 JSON 数据并不完全符合标准格式。比如,配置文件为了可读性添加注释,前端开发人员可能使用单引号代替双引号。demjson 就像一位贴心的处理者,能轻松接纳这些 “不规矩” 的数据,实现顺利解析。
4. 编码增强
data = {
"姓名": "小明",
"成绩": 99.5,
"班级": None
}
json_str = demjson.encode(data,
encoding='utf-8',
compactly=False,indent_amount=4) # 美化输出
在处理多语言数据时,标准 json库需要设置ensur_ascii = False来正确显示非ASCII字符。而demjson的encoding方法支持UTF-8编码用于解决乱码问题,并且通过compactly = False和indent_amount=4参数,可以将数据格式化为缩进整齐的字符串,便于查看和调试。
5.文件与python对象互转
import demjson
data = {"students": [{"name":"小明"}, {"name":"小红"}]}
#将字典对象存储到json文件,并美化输出
demjson.encode_to_file('data.json',data,compactly=False,indent_amount=4,overwrite=True)
#将json文件转为字典对象
data = demjson.decode_file('data.json',encoding='utf-8')
实战案例
案例 1:处理特殊数值
# JavaScript特殊值
js_json = "{inf: Infinity, nan: NaN}"
data = demjson.decode(js_json) # → {'inf': inf, 'nan': nan}
print(data['inf'] > 1e300) # → True
在 JavaScript 和 Python 数据交互过程中,JavaScript 的Infinity和NaN特殊值无法被标准 json 库直接解析。demjson 填补了这一空白,不仅能解析这些特殊值,还能在 Python 中正确表示,方便进行后续运算和逻辑判断。
案例 2:严格模式
import demjson
data = '{"students": [{"name":"小明"},{"name":"小红"},]}'
# 需要严格验证时
data = demjson.decode(data,strict=True,encoding='utf8') # 启用严格模式
#->因为数据多了一个逗号,会报错:
raise errors[0]
demjson.JSONDecodeError: Strict JSON does not allow a final comma in an array (list) literal
当需要确保数据符合标准 JSON 规范时,启用严格模式。例如,在接收第三方 API 数据时,开启严格模式可以防止不规范数据进入系统,保证数据的准确性和一致性。
案例 3:JSONP 支持
jsonp_data = "callback({\"message\":\"Hello, Demjson!\"})"
start = jsonp_data.find('{')
end = jsonp_data.rfind('}')
json_str = jsonp_data[start:end + 1]
data = demjson.decode(json_str)
在前端与后端进行数据交互时,JSONP 是一种常用的跨域解决方案。demjson 可以轻松提取 JSONP 数据中的 JSON 部分,实现数据的解析和处理。
案例4: 支持转换对象中的Decimal对象,datetime对象等
from decimal import Decimal
import datetime
import json
dict_data = {"name":"lili","age":Decimal(str('20.0')),
"datetime":datetime.datetime.now()
}
使用json.dumps()执行会报错
print(json.dumps(dict_data))
#结果如下
TypeError: Object of type Decimal is not JSON serializable
使用demjson.encode()转换成功
print(demjson.encode(dict_data))
#结果如下
{"age":20.0,"datetime":"2023-08-06T20:53:05.538254","name":"lili"}
专家工具箱
1. 格式验证
demjson自带jsonlint工具,用来校验json文件的准确性。
本地创建一个test.json文件,文件中有一处错误,使用jsonlint校验,结果如下:
(venv) htsc@192 bin % jsonlint test.json
test.json:1:18: Error: Values must be separated by a comma
| At line 1, column 18, offset 18
| Object started at line 1, column 0, offset 0 (AT-START)
test.json: has errors
小白:(献上膝盖)原来 demjson 这么强大!
专家:(扶起小白)记住:能力越大责任越大,在处理不规范 JSON 数据时,demjson的解析速度相对较快,性能表现出色。
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)