百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

数据湖(七):Iceberg 概念及回顾什么是数据湖

liuian 2025-05-16 14:47 2 浏览

#头条创作挑战赛#

Iceberg 概念及回顾什么是数据湖

一、回顾什么是数据湖

数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析,对数据进行加工,例如:大数据处理、实时分析、机器学习,以指导做出更好地决策。

二、大数据为什么需要数据湖

当前基于 Hive 的离线数据仓库已经非常成熟,在传统的离线数据仓库中对记录级别的数据进行更新是非常麻烦的,需要对待更新的数据所属的整个分区,甚至是整个表进行全面覆盖才行,由于离线数仓多级逐层加工的架构设计,数据更新时也需要从贴源层开始逐层反应到后续的派生表中去。

随着实时计算引擎的不断发展以及业务对于实时报表的产出需求不断膨胀,业界最近几年就一直聚焦并探索于实时数仓建设。根据数仓架构演变过程,在 Lambda 架构中含有离线处理与实时处理两条链路,其架构图如下:

正是由于两条链路处理数据导致数据不一致等一些列问题所以才有了 Kappa 架构,Kappa 架构如下:

Kappa 架构可以称为真正的实时数仓,目前在业界最常用实现就是 Flink + Kafka,然而基于 Kafka+Flink 的实时数仓方案也有几个非常明显的缺陷,所以在目前很多企业中实时数仓构建中经常使用混合架构,没有实现所有业务都采用 Kappa 架构中实时处理实现。Kappa 架构缺陷如下:

  • Kafka 无法支持海量数据存储。对于海量数据量的业务线来说,Kafka 一般只能存储非常短时间的数据,比如最近一周,甚至最近一天。
  • Kafka 无法支持高效的 OLAP 查询,大多数业务都希望能在 DWD\DWS 层支持即席查询的,但是 Kafka 无法非常友好地支持这样的需求。
  • 无法复用目前已经非常成熟的基于离线数仓的数据血缘、数据质量管理体系。需要重新实现一套数据血缘、数据质量管理体系。
  • Kafka 不支持 update/upsert,目前 Kafka 仅支持 append。

为了解决 Kappa 架构的痛点问题,业界最主流是采用“批流一体”方式,这里批流一体可以理解为批和流使用 SQL 同一处理,也可以理解为处理框架的统一,例如:Spark、Flink,但这里更重要指的是存储层上的统一,只要存储层面上做到“批流一体”就可以解决以上 Kappa 遇到的各种问题。数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。

三、Iceberg 概念及特点

1、概念

Apache Iceberg 是一种用于大型数据分析场景的开放表格式(Table Format)。Iceberg 使用一种类似于 SQL 表的高性能表格式,Iceberg 格式表单表可以存储数十 PB 数据,适配 Spark、Trino、PrestoDB、Flink 和 Hive 等计算引擎提供高性能的读写和元数据管理功能,Iceberg 是一种数据湖解决方案。

注意:Trino 就是原来的 PrestoSQL ,2020 年 12 月 27 日,PrestoSQL 项目更名为 Trino,Presto 分成两大分支:PrestoDB、PrestorSQL。

2、特点

Iceberg 非常轻量级,可以作为 lib 与 Spark、Flink 进行集成

Iceberg 官网:
https://iceberg.apache.org/

Iceberg 具备以下特点:

  • Iceberg 支持实时/批量数据写入和读取,支持 Spark/Flink 计算引擎。
  • Iceberg 支持事务 ACID,支持添加、删除、更新数据。
  • 不绑定任何底层存储,支持 Parquet、ORC、Avro 格式兼容行存储和列存储。
  • Iceberg 支持隐藏分区和分区变更,方便业务进行数据分区策略。
  • Iceberg 支持快照数据重复查询,具备版本回滚功能。
  • Iceberg 扫描计划很快,读取表或者查询文件可以不需要分布式 SQL 引擎。
  • Iceberg 通过表元数据来对查询进行高效过滤。
  • 基于乐观锁的并发支持,提供多线程并发写入能力并保证数据线性一致。

相关推荐

【常识】如何优化Windows 7

优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...

系统优化!Windows 11/10 必做的十个优化配置

以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...

最好用音频剪辑的软件,使用方法?

QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...

Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑

前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...

Motion for Vue:为Vue量身定制的强大动画库

在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...

CSS view():JavaScript 滚动动画的终结

前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...

「大数据」 hive入门

前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...

青铜时代的终结:对奖牌架构的反思

作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...

解析IBM SQL-on-Hadoop的优化思路

对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...

交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较

图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...

深入解析全新 AWS S3 Tables:重塑数据湖仓架构

在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...

Apache DataFusion查询引擎简介

简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...

大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)

一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...

比较前 3 名Schema管理工具

关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...

大数据技术之Flume

第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...