Apache四个大型开源数据和数据湖系统
liuian 2025-05-16 14:47 2 浏览
四个大型数据和数据湖的大型Apache系统,Apache Shardingsphere,Apache冰山,Apache Hudi和Apache IotdB
管理大数据所需的许多功能是其中一些是事务,数据突变,数据校正,流媒体支持,架构演进,因为酸性事务能力Apache提供了四种,用于满足和管理大数据。
Apache Sharding Sphere
它是一个众所周知的数据库中间件系统。它包含三个独立的模块,JDBC,Proxy和Sidecar(计划),但在部署时它们都混合在一起。Apache Shardingsphere提供标准化的数据分片,分布式事务和数据库治理功能,可以针对各种多样化应用方案,例如Java同义,异构语言和云本机。
今天的电子商务主要依赖于关系数据库和分布式环境,高效查询的激增和数据快速转移成为公司关系数据库的主要目标Apache Shardingsphere是伟大的关系数据库中间件生态系统,它为其开发人员提供了合理的计算和存储功能关系数据库。
Apache Iceberg
Apache Iceberg 最初由Netflix设计和开发。关键的想法是组织目录树中的所有文件,如果您需要在2018年5月创建的文件在Apache iceBerg中,您只需找出该文件并只读该文件,也没有必要阅读您可以阅读的其他文件忽略您对当前情况不太重要的其他数据。核心思想是跟踪时间表上表中的所有更改。
它是一种用于跟踪非常大的表的数据湖解决方案,它是一个轻量级数据湖解决方案,旨在解决列出大量分区和耗时和不一致的元数据和HDFS数据的问题。它包含三种类型的表格格式木质,Avro和Orc.in Apache iceberg表格格式与文件集合和文件格式的集合执行相同的东西,允许您在单个文件中跳过数据
它是一种用于在非常大型和比例表上跟踪和控制的新技术格式。它专为对象存储而设计(例如S3)。Iceberg 中更重要的概念是一个快照。快照表示一组完整的表数据文件。为每个更新操作生成新快照。
Apache Iceberg 有以下特征:
- ACID 事务能力,可以在不影响当前运行数据处理任务的情况下进行上游数据写入,这大大简化了ETL; Iceberg 提供更好的合并能力,可以大大减少数据存储延迟;
- 支持更多的分析引擎优异的内核抽象使其不绑定到特定的计算引擎。目前,冰山支持的计算发动机是Spark,Flink,Presto和Hive。
- Apache Iceberg为文件存储,组织,基于流的增量计算模型和基于批处理的全尺度计算模型提供统一和灵活的数据。批处理和流式传输任务可以使用类似的存储模型,并且不再隔离数据。iceberg支持隐藏的分区和分区演进,这促进了业务更新数据分区策略。支持三个存储格式木质,Avro和Orc。
- 增量读取处理能力iceBerg支持以流式方式读取增量数据,支持流和传输表源。
Apache Hudi
Apache Hudi是一个大数据增量处理框架,它试图解决摄取管道的效率问题和在大数据中需要插入,更新和增量消耗基元的ETL管道。它是针对分析和扫描优化的数据存储抽象,其可以在几分钟内将更改应用于HDF中的数据集,并支持多个增量处理系统来处理数据。通过自定义InputFormat与当前Hadoop生态系统(包括Apache Hive,Apache Parquet,Presto和Apache Spark)的集成使框架无缝为最终用户。
Hudi的设计目标是快速且逐步更新HDFS上的数据集。有两种更新数据的方法:读写编写并合并读取。写入模式上的副本是当我们更新数据时,我们需要通过索引获取更新数据中涉及的文件,然后读取数据并合并更新的数据。这种模式更易于更新数据,但是当涉及的数据更新时更新时,效率非常低;并合并读取是要将更新写入单独的新文件,然后我们可以选择与原始数据同步或异步地将更新的数据与原始数据合并(可以调用组合),因为更新的仅编写新文件,所以此模式将更新更快。
在Hudi系统的帮助下,很容易在MySQL,HBase和Cassandra中收集增量数据,并将其保存到Hudi。然后,presto,spark和hive可以快速阅读这些递增更新的数据。
Apache Iotdb
它是一种物联网时间序列工业数据库,Apache IOTDB是一款集成,存储,管理和Anallyze Thge IoT时间序列数据的软件系统。Apache IOTDB采用具有高性能和丰富功能的轻量级架构,并与Apache Hadoop,Spark和Flink等进行深度集成,可以满足工业中大规模数据存储,高速数据读数和复杂数据分析的需求事物互联网领域。
Apache IOTDB套件由多个组件组成,它们一起形成一系列功能,例如“数据收集 - 数据写入数据存储 - 数据查询 - 数据可视化数据分析”。其结构如下:
用户可以导入从设备上的传感器收集的时间序列数据,服务器负载和CPU内存等消息队列中的时间序列数据,时间序列数据,应用程序的时间序列数据或从其他数据库到本地或远程IOTDB的时间序列数据JDBC。在。用户还可以直接将上述数据写入本地(或在HDFS上)TSFile文件。TSFile文件可以写入HDF,以实现数据处理平台的数据处理平台等异常检测和机器学习等数据处理任务。对于写入HDFS或本地的TSFile文件,您可以使用TSFile-Hadoop或TSFile-Spark连接器来允许Hadoop或Spark处理数据。分析结果可以写回TSFile文件。IOTDB和TSFile还提供相应的客户端工具,以满足用户在SQL,脚本和图形格式中查看数据的需求。
(本文由闻数起舞翻译自José Francisco Caiceo的文章《Four great Apache systems for big data and data lake, Apache ShardingSphere, Apache Iceberg, Apache Hudi and Apache IoTDB》,转载请注明出处,原文链接:
https://medium.com/cloud-believers/four-great-apache-systems-for-big-data-and-data-lake-apache-shardingsphere-apache-iceberg-238485129944)
相关推荐
- 【常识】如何优化Windows 7
-
优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...
- 系统优化!Windows 11/10 必做的十个优化配置
-
以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...
- 最好用音频剪辑的软件,使用方法?
-
QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...
- Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑
-
前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...
- Motion for Vue:为Vue量身定制的强大动画库
-
在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...
- CSS view():JavaScript 滚动动画的终结
-
前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...
- 「大数据」 hive入门
-
前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...
- 青铜时代的终结:对奖牌架构的反思
-
作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...
- 解析IBM SQL-on-Hadoop的优化思路
-
对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...
- 交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较
-
图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...
- 深入解析全新 AWS S3 Tables:重塑数据湖仓架构
-
在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...
- Apache DataFusion查询引擎简介
-
简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...
- 大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)
-
一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...
- 比较前 3 名Schema管理工具
-
关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...
- 大数据技术之Flume
-
第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)