Python JSON 魔法手册:数据转换的终极艺术
liuian 2025-05-10 23:19 29 浏览
对话实录
小白:(崩溃)我从 API 拿到了 JSON 数据,怎么变成 Python 对象?
专家:(掏出魔法书)用 json 模块,轻松实现数据转换!
JSON 基础三连击
1. 字符串 <-> Python 对象
import json
# JSON字符串 → Python对象
data = json.loads('{"name": "小明", "age": 18}')
print(data["name"]) # → 小明
# Python对象 → JSON字符串
json_str = json.dumps({"name": "小红", "age": 16})
print(json_str) # → {"name": "小红", "age": 16}
专家提醒:json.loads()的's'代表string!这就好比在数据的 “翻译” 过程中,loads专门负责把JSON格式的字符串 “翻译” 成Python 能识别的对象;与之相对,dumps则把Python对象“翻译”成JSON字符串。
2. 文件 <-> Python 对象
# 读取JSON文件
with open("data.json", encoding="utf-8") as f:
data = json.load(f)
# 写入JSON文件
with open("output.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
在 JSON 文件的处理过程中,json.load与json.dump就像一对默契的搬运工,前者将文件中的JSON 数据搬进Python 程序,后者则把Python对象数据搬运到文件中存储。
3.json数据和python数据类型对照表
json字符串和python数据转换的对照表如下
JSON | Python |
object | dict |
array | list、tuple |
string | unicode、str |
number (int) | int, long |
number (real) | float |
true | True |
false | False |
null | None |
六大实战案例
案例 1:处理 API 响应
import requests
response = requests.get("https://api.example.com/data")
data = response.json() # 直接获取Python对象
print(data["results"][0])
当我们从 API 获取数据时,response.json()就像一把万能钥匙,轻松将 API 返回的 JSON 数据转换成 Python 对象,方便我们进一步处理数据。
案例 2:自定义对象序列化
class User:
def __init__(self, name, age):
self.name = name
self.age = age
# 自定义编码器
def user_encoder(obj):
if isinstance(obj, User):
return {"name": obj.name, "age": obj.age}
raise TypeError
user = User("小明", 18)
json_str = json.dumps(user, default=user_encoder)
在处理自定义类对象时,默认的 JSON 序列化方法会 “不知所措”。这时,我们自定义的user_encoder函数就像一位 “特殊翻译”,指导json.dumps如何将User对象转换成 JSON 格式,让数据能顺利在不同场景中流转。
案例 3:处理复杂数据类型
from datetime import datetime
from decimal import Decimal
import json
data = {
"time": datetime.now(),
"price": Decimal("99.99")
}
# 自定义序列化
def custom_encoder(obj):
if isinstance(obj, datetime):
return obj.isoformat()
if isinstance(obj, Decimal):
return float(obj)
raise TypeError
json_str = json.dumps(data, default=custom_encoder)
print(json_str)
datetime和Decimal这类复杂数据类型,无法被 JSON 直接处理。通过自定义的custom_encoder,我们将datetime对象转换成 ISO 格式字符串,将Decimal对象转换成float类型,从而突破 JSON 序列化的限制,让数据准确无误地进行转换和存储。
案例 4:多文件数据整合
import json
file_list = ["file1.json", "file2.json", "file3.json"]
combined_data = []
for file in file_list:
with open(file, encoding="utf-8") as f:
data = json.load(f)
combined_data.extend(data)
with open("combined.json", "w", encoding="utf-8") as f:
json.dump(combined_data, f, ensure_ascii=False, indent=2)
在项目开发中,常常需要整合多个 JSON 文件的数据。这段代码通过循环读取多个文件,将数据合并到一个列表中,再将整合后的数据写入新的 JSON 文件,实现了数据的高效汇总与管理。
案例 5:数据过滤与清洗
with open("raw_data.json", encoding="utf-8") as f:
data = json.load(f)
filtered_data = [item for item in data if item["status"] == "active"]
with open("filtered_data.json", "w", encoding="utf-8") as f:
json.dump(filtered_data, f, ensure_ascii=False, indent=2)
当数据量庞大且包含无效或错误信息时,数据过滤与清洗至关重要。此代码从原始 JSON 数据中筛选出状态为 “active” 的条目,去除无效数据,生成更精准、可用的数据集,为后续分析和应用提供保障。
案例 6:实时数据更新
with open("data.json", "r+", encoding="utf-8") as f:
data = json.load(f)
data["count"] = data.get("count", 0) + 1
f.seek(0)
json.dump(data, f, ensure_ascii=False, indent=2)
f.truncate()
在一些需要实时记录数据变化的场景,如计数器、日志记录等,这段代码实现了对 JSON 文件数据的实时更新。通过读取文件数据、修改数据、再写回文件的操作,确保数据的时效性和准确性。
血泪陷阱
编码问题
# 错误示范
json.dumps({"name": "小明"}) # → {"name": "\u5c0f\u660e"}
# 正确做法
json.dumps({"name": "小明"}, ensure_ascii=False)
默认情况下,json.dumps会将非 ASCII 字符转义为 Unicode 编码。添加ensure_ascii=False参数,就可以让中文字符正常显示,避免乱码问题,确保数据在传输和展示过程中的准确性。
循环引用
data = {"a": 1}
data["b"] = data # 循环引用
# 错误示范
json.dumps(data) # ValueError
# 解决方案
from json import JSONEncoder
class MyEncoder(JSONEncoder):
def default(self, obj):
# 处理循环引用
return str(obj)
当数据结构中存在循环引1用时,json.dumps会抛出ValueError。通过自定义JSONEncoder,我们可以对循环引用的对象进行特殊处理,如将其转换成字符串,从而避免程序崩溃。
日期时间处理
# 错误示范
json.dumps({"time": datetime.now()}) # TypeError
# 正确做法
json.dumps({"time": datetime.now().isoformat()})
由于 JSON 本身不支持datetime类型,直接对包含datetime对象的数据进行序列化会导致TypeError。将datetime对象转换成 ISO 格式字符串,是一种简单有效的解决方案,确保日期时间数据能顺利进行 JSON 转换。
专家工具箱
json.dump和json.dumps函数的参数介绍
这两个函数的一些参数配置可使转换后的json数据更美观更容易阅读
默认的参数如下:
skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False
- sort_keys参数(排序)
如果传入sort_keys为True,转换为json时讲按照传入的字典进行排序。
python_dictinfo = { 'name': 'lili', 'age': 20}
json_data = json.dumps(python_dictinfo,sort_keys=True)
print(f'转换后的json数据: {json_data}')
#打印排序后的结果
转换后的json数据: {"age": 20, "name": "lili"}
- indent参数(美化输出)
indent传入的是非负整数,则JSON数组元素和对象成员将使用该缩进进行漂亮的打印
python_dictinfo = {"name":"lili","age":20.00,"address":["china","js","nj"],"man":True,"woman":False,"money":None}
json_data = json.dumps(python_dictinfo,indent=4)
print(f'转换后的json数据: {json_data}')
转换后的json数据:
{
"name": "lili",
"age": 20.0,
"address": [
"china",
"js",
"nj"
],
"man": true,
"woman": false,
"money": null
}
- separators参数
表示“分隔符”,默认值为(',',':'),如果指定为其他的元组,比如('a','b'),意味着原来的逗号会被替换为a,原来的冒号会被替换为b,并去掉后面的空格。
python_dictinfo = python_dictinfo = { 'name': 'lili', 'age': 20}
json_data = json.dumps(python_dictinfo,separators=('a','b'))
print(f'转换后的json数据: {json_data}')
#打印结果
转换后的json数据: {"name"b"lili"a"age"b20}
- skipkeys参数
默认值是False,如果“skipkeys”为True,则非python基本数据类型的“dict”键
(“str”、“int”、“float”、“bool”、“None”),将被跳过而不会引发“TypeError”。
#定义一个元组的键
python_dictinfo = {'name': 'lili', 'age': 20, ('china', 'js', 'nj'): None}
json_data = json.dumps(python_dictinfo)
print(f'转换后的json数据: {json_data}')
#执行后报错
TypeError: keys must be str, int, float, bool or None, not tuple
添加参数skipkeys=True
json_data = json.dumps(python_dictinfo,skipkeys=True)
print(f'转换后的json数据: {json_data}')
#打印结果 会忽略掉元组键值
转换后的json数据: {"name": "lili", "age": 20}
- ensure_ascii参数(支持中文)
默认值True,输出ASCLL码,如果配置为False,可以输出中文。
python_dictinfo = {'name': '王磊', 'age': 20 }
json_data = json.dumps(python_dictinfo)
print(f'转换后的json数据: {json_data}')
#结果如下
转换后的json数据: {"name": "\u738b\u78ca", "age": 20}
配置为False后可打印中文
json_data = json.dumps(python_dictinfo,ensure_ascii=False)
print(f'转换后的json数据: {json_data}')
#结果如下
转换后的json数据: {"name": "王磊", "age":20}
- check_circular参数
如果check_circular为false,则跳过对容器类型的循环引用检查,循环引用将导致溢出错误(或更糟的情况)。
- allow_nan参数
默认为True,序列化超出范围的浮点值(nan、inf、-inf)转为json格式 (nan、Infinity、-Infinity)。如果为False,则执行时会报错。
python_dictinfo = {'name': 'lili', 'age': float('inf')}
json_data = json.dumps(python_dictinfo,allow_nan=False)
# allow_nan=False 则执行时会报错
ValueError: Out of range float values are not JSON compliant: inf
小白:(献上膝盖)原来 JSON 处理这么强大!
专家:(扶起小白)记住:JSON 是数据交换的通用语言,掌握它走遍天下都不怕!
相关推荐
- Python生态下的微服务框架FastAPI
-
FastAPI是什么FastAPI是一个用于构建API的web框架,使用Python并基于标准的Python类型提示。与flask相比有什么优势高性能:得益于uvloop,可达到与...
- SpringBoot:如何解决跨域问题,详细方案和示例代码
-
跨域问题在前端开发中经常会遇到,特别是在使用SpringBoot框架进行后端开发时。解决跨域问题的方法有很多,我将为你提供一种详细的方案,包含示例代码。首先,让我们了解一下什么是跨域问题。跨域是指在...
- 使用Nginx轻松搞定跨域问题_使用nginx轻松搞定跨域问题的方法
-
跨域问题(Cross-OriginResourceSharing,简称CORS)是由浏览器的同源策略引起的。同源策略指的是浏览器限制来自不同源(协议、域名、端口)的JavaScript对资源的...
- spring boot过滤器与拦截器的区别
-
有小伙伴使用springboot开发多年,但是对于过滤器和拦截器的主要区别依然傻傻分不清。今天就对这两个概念做一个全面的盘点。定义与作用范围过滤器(Filter):过滤器是一种可以动态地拦截、处理和...
- nginx如何配置跨域_nginx配置跨域访问
-
要在Nginx中配置跨域,可以使用add_header指令来添加Access-Control-Allow-*头信息,如下所示:location/api{if($reques...
- 解决跨域问题的8种方法,含网关、Nginx和SpringBoot~
-
跨域问题是浏览器为了保护用户的信息安全,实施了同源策略(Same-OriginPolicy),即只允许页面请求同源(相同协议、域名和端口)的资源,当JavaScript发起的请求跨越了同源策略,...
- 图解CORS_图解数学
-
CORS的全称是Cross-originresourcesharing,中文名称是跨域资源共享,是一种让受限资源能够被其他域名的页面访问的一种机制。下图描述了CORS机制。一、源(Orig...
- CORS 幕后实际工作原理_cors的工作原理
-
跨域资源共享(CORS)是Web浏览器实施的一项重要安全机制,用于保护用户免受潜在恶意脚本的攻击。然而,这也是开发人员(尤其是Web开发新手)感到沮丧的常见原因。小编在此将向大家解释它存在...
- 群晖无法拉取Docker镜像?最稳定的方法:搭建自己的加速服务!
-
因为未知的原因,国内的各大DockerHub镜像服务器无法使用,导致在使用群晖时无法拉取镜像构建容器。网上大部分的镜像加速服务都是通过Cloudflare(CF)搭建的,为什么都选它呢?因为...
- Sa-Token v1.42.0 发布,新增 API Key、TOTP 验证码等能力
-
Sa-Token是一款免费、开源的轻量级Java权限认证框架,主要解决:登录认证、权限认证、单点登录、OAuth2.0、微服务网关鉴权等一系列权限相关问题。目前最新版本v1.42.0已...
- NGINX常规CORS错误解决方案_nginx配置cors
-
CORS错误CORS(Cross-OriginResourceSharing,跨源资源共享)是一种机制,它使用额外的HTTP头部来告诉浏览器允许一个网页运行的脚本从不同于它自身来源的服务器上请求资...
- Spring Boot跨域问题终极解决方案:3种方案彻底告别CORS错误
-
引言"接口调不通?前端同事又双叒叕在吼跨域了!""明明Postman能通,浏览器却报OPTIONS403?""生产环境跨域配置突然失效,凌晨3点被夺命连环Ca...
- SpringBoot 项目处理跨域的四种技巧
-
上周帮一家公司优化代码时,顺手把跨域的问题解决了,这篇文章,我们聊聊SpringBoot项目处理跨域的四种技巧。1什么是跨域我们先看下一个典型的网站的地址:同源是指:协议、域名、端口号完全相...
- Spring Cloud入门看这一篇就够了_spring cloud使用教程
-
SpringCloud微服务架构演进单体架构垂直拆分分布式SOA面向服务架构微服务架构服务调用方式:RPC,早期的webservice,现在热门的dubbo,都是RPC的典型代表HTTP,HttpCl...
- 前端程序员:如何用javascript开发一款在线IDE?
-
前言3年前在AWSre:Invent大会上AWS宣布推出Cloud9,用于在云端编写、运行和调试代码,它可以直接运行在浏览器中,也就是传说中的WebIDE。3年后的今天随着国内云计算的发...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)