百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法

liuian 2025-05-08 19:41 59 浏览

在上一篇文章中,我们介绍了 Deep Deterministic Policy Gradient (DDPG) 算法,并使用它解决了 Pendulum 问题。本文将深入探讨 Twin Delayed DDPG (TD3) 算法,这是一种改进的 DDPG 算法,能够有效解决 DDPG 中的过估计问题。我们将使用 PyTorch 实现 TD3 算法,并应用于经典的 Pendulum 问题。



一、TD3 算法基础

TD3 是 DDPG 的改进版本,通过引入以下三个关键技术来解决 DDPG 中的过估计问题:

1.双重 Critic 网络

  • 使用两个 Critic 网络来估计 Q 值,从而减少过估计问题。

2.延迟更新

  • 延迟 Actor 网络的更新,确保 Critic 网络更稳定地收敛。

3.目标策略平滑

  • 在目标动作中加入噪声,从而减少 Critic 网络的过拟合。

1. TD3 的核心思想

  • 双重 Critic 网络
    • 使用两个 Critic 网络来估计 Q 值,取两者中的较小值作为目标 Q 值,从而减少过估计。
  • 延迟更新
    • 每更新 Critic 网络多次,才更新一次 Actor 网络,确保 Critic 网络更稳定地收敛。
  • 目标策略平滑
    • 在目标动作中加入噪声,从而减少 Critic 网络的过拟合。

2. TD3 的优势

  • 减少过估计
    • 通过双重 Critic 网络和目标策略平滑,TD3 能够有效减少 Q 值的过估计。
  • 训练稳定
    • 延迟更新策略确保 Critic 网络更稳定地收敛。
  • 适用于连续动作空间
    • TD3 能够直接输出连续动作,适用于机器人控制、自动驾驶等任务。

3. TD3 的算法流程

  1. 使用当前策略采样一批数据。
  2. 使用目标网络计算目标 Q 值。
  3. 更新 Critic 网络以最小化 Q 值的误差。
  4. 延迟更新 Actor 网络以最大化 Q 值。
  5. 更新目标网络。
  6. 重复上述过程,直到策略收敛。

二、Pendulum 问题实战

我们将使用 PyTorch 实现 TD3 算法,并应用于 Pendulum 问题。目标是控制摆杆使其保持直立。

1. 问题描述

Pendulum 环境的状态空间包括摆杆的角度和角速度。动作空间是一个连续的扭矩值,范围在 -2,2 之间。智能体每保持摆杆直立一步,就会获得一个负的奖励,目标是最大化累积奖励。

2. 实现步骤

  1. 安装并导入必要的库。
  2. 定义 Actor 网络和 Critic 网络。
  3. 定义 TD3 训练过程。
  4. 测试模型并评估性能。

3. 代码实现

以下是完整的代码实现:

import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random
from collections import deque
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

env = gym.make('Pendulum-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])

SEED = 42
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)


# 改进的 Actor 网络(增加层归一化)
class Actor(nn.Module):
    def __init__(self, state_dim, action_dim, max_action):
        super(Actor, self).__init__()
        self.l1 = nn.Linear(state_dim, 256)
        self.ln1 = nn.LayerNorm(256)
        self.l2 = nn.Linear(256, 256)
        self.ln2 = nn.LayerNorm(256)
        self.l3 = nn.Linear(256, action_dim)
        self.max_action = max_action

    def forward(self, x):
        x = F.relu(self.ln1(self.l1(x)))
        x = F.relu(self.ln2(self.l2(x)))
        x = torch.tanh(self.l3(x)) * self.max_action
        return x


# 改进的 Critic 网络(增加层归一化)
class Critic(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(Critic, self).__init__()
        self.l1 = nn.Linear(state_dim + action_dim, 256)
        self.ln1 = nn.LayerNorm(256)
        self.l2 = nn.Linear(256, 256)
        self.ln2 = nn.LayerNorm(256)
        self.l3 = nn.Linear(256, 1)

    def forward(self, x, u):
        x = F.relu(self.ln1(self.l1(torch.cat([x, u], 1))))
        x = F.relu(self.ln2(self.l2(x)))
        x = self.l3(x)
        return x


class TD3:
    def __init__(self, state_dim, action_dim, max_action):
        self.actor = Actor(state_dim, action_dim, max_action).to(device)
        self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
        self.actor_target.load_state_dict(self.actor.state_dict())
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=3e-4)

        self.critic1 = Critic(state_dim, action_dim).to(device)
        self.critic2 = Critic(state_dim, action_dim).to(device)
        self.critic1_target = Critic(state_dim, action_dim).to(device)
        self.critic2_target = Critic(state_dim, action_dim).to(device)
        self.critic1_target.load_state_dict(self.critic1.state_dict())
        self.critic2_target.load_state_dict(self.critic2.state_dict())
        self.critic1_optimizer = optim.Adam(self.critic1.parameters(), lr=3e-4)
        self.critic2_optimizer = optim.Adam(self.critic2.parameters(), lr=3e-4)

        self.max_action = max_action
        self.replay_buffer = deque(maxlen=1000000)
        self.batch_size = 256
        self.gamma = 0.99
        self.tau = 0.005
        self.policy_noise = 0.2
        self.noise_clip = 0.5
        self.policy_freq = 2
        self.total_it = 0
        self.exploration_noise = 0.1  # 新增探索噪声

    def select_action(self, state, add_noise=True):
        state = torch.FloatTensor(state.reshape(1, -1)).to(device)
        action = self.actor(state).cpu().data.numpy().flatten()
        if add_noise:
            noise = np.random.normal(0, self.exploration_noise, size=action_dim)
            action = (action + noise).clip(-self.max_action, self.max_action)
        return action

    def train(self):
        if len(self.replay_buffer) < self.batch_size:
            return

        self.total_it += 1

        batch = random.sample(self.replay_buffer, self.batch_size)
        state = torch.FloatTensor(np.array([t[0] for t in batch])).to(device)
        action = torch.FloatTensor(np.array([t[1] for t in batch])).to(device)
        reward = torch.FloatTensor(np.array([t[2] for t in batch])).reshape(-1, 1).to(device) / 10.0  # 奖励缩放
        next_state = torch.FloatTensor(np.array([t[3] for t in batch])).to(device)
        done = torch.FloatTensor(np.array([t[4] for t in batch])).reshape(-1, 1).to(device)

        with torch.no_grad():
            noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip)
            next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action)
            target_Q1 = self.critic1_target(next_state, next_action)
            target_Q2 = self.critic2_target(next_state, next_action)
            target_Q = torch.min(target_Q1, target_Q2)
            target_Q = reward + (1 - done) * self.gamma * target_Q

        current_Q1 = self.critic1(state, action)
        current_Q2 = self.critic2(state, action)
        critic1_loss = F.mse_loss(current_Q1, target_Q)
        critic2_loss = F.mse_loss(current_Q2, target_Q)
        self.critic1_optimizer.zero_grad()
        critic1_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic1.parameters(), 1.0)  # 梯度裁剪
        self.critic1_optimizer.step()
        self.critic2_optimizer.zero_grad()
        critic2_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic2.parameters(), 1.0)
        self.critic2_optimizer.step()

        if self.total_it % self.policy_freq == 0:
            actor_loss = -self.critic1(state, self.actor(state)).mean()
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            torch.nn.utils.clip_grad_norm_(self.actor.parameters(), 1.0)
            self.actor_optimizer.step()

            for param, target_param in zip(self.critic1.parameters(), self.critic1_target.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
            for param, target_param in zip(self.critic2.parameters(), self.critic2_target.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
            for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

    def save(self, filename):
        torch.save(self.actor.state_dict(), filename + "_actor.pth")


def train_td3(env, agent, episodes=2000, early_stop_threshold=-150):
    rewards_history = []
    moving_avg = []
    best_avg = -np.inf

    for ep in range(episodes):
        state,_ = env.reset()
        episode_reward = 0
        done = False
        step = 0

        while not done:
            # 线性衰减探索噪声
            if ep < 300:
                agent.exploration_noise = max(0.5 * (1 - ep / 300), 0.1)
            else:
                agent.exploration_noise = 0.1

            action = agent.select_action(state, add_noise=(ep < 100))  # 前100轮强制探索
            next_state, reward, done, _, _ = env.step(action)
            agent.replay_buffer.append((state, action, reward, next_state, done))
            state = next_state
            episode_reward += reward
            agent.train()
            step += 1

        rewards_history.append(episode_reward)
        current_avg = np.mean(rewards_history[-50:])
        moving_avg.append(current_avg)

        if current_avg > best_avg:
            best_avg = current_avg
            agent.save("td3_pendulum_best")

        if (ep + 1) % 50 == 0:
            print(f"Episode: {ep + 1}, Avg Reward: {current_avg:.2f}")

        # 早停机制
        if current_avg >= early_stop_threshold:
            print(f"早停触发,平均奖励达到 {current_avg:.2f}")
            break

    return moving_avg, rewards_history


# 训练并可视化
td3_agent = TD3(state_dim, action_dim, max_action)
moving_avg, rewards_history = train_td3(env, td3_agent, episodes=2000)

# 可视化结果
plt.figure(figsize=(12, 6))
plt.plot(rewards_history, alpha=0.6, label='single round reward')
plt.plot(moving_avg, 'r-', linewidth=2, label='moving average (50 rounds)')
plt.xlabel('episodes')
plt.ylabel('reward')
plt.title('TD3 training performance on Pendulum-v1')
plt.legend()
plt.grid(True)
plt.show()

三、代码解析

1.Actor 和 Critic 网络

  • Actor 网络输出连续动作,通过 tanh 函数将动作限制在 -max_action,max_action 范围内。
  • Critic 网络输出状态-动作对的 Q 值。

2.TD3 训练过程

  • 使用当前策略采样一批数据。
  • 使用目标网络计算目标 Q 值。
  • 更新 Critic 网络以最小化 Q 值的误差。
  • 延迟更新 Actor 网络以最大化 Q 值。
  • 更新目标网络。

3.训练过程

  • 在训练过程中,每 50 个 episode 打印一次平均奖励。
  • 训练结束后,绘制训练过程中的总奖励曲线。

四、运行结果

运行上述代码后,你将看到以下输出:

  • 训练过程中每 50 个 episode 打印一次平均奖励。
  • 训练结束后,绘制训练过程中的总奖励曲线。

五、总结

本文介绍了 TD3 算法的基本原理,并使用 PyTorch 实现了一个简单的 TD3 模型来解决 Pendulum 问题。通过这个例子,我们学习了如何使用 TD3 算法进行连续动作空间的策略优化。

在下一篇文章中,我们将探讨更高级的强化学习算法,如 Soft Actor-Critic (SAC)。敬请期待!

代码实例说明

  • 本文代码可以直接在 Jupyter Notebook 或 Python 脚本中运行。
  • 如果你有 GPU,代码会自动检测并使用 GPU 加速。

希望这篇文章能帮助你更好地理解 TD3 算法!如果有任何问题,欢迎在评论区留言讨论。

相关推荐

Python 中 必须掌握的 20 个核心函数——items()函数

items()是Python字典对象的方法,用于返回字典中所有键值对的视图对象。它提供了对字典完整内容的高效访问和操作。一、items()的基本用法1.1方法签名dict.items()返回:字典键...

Python字典:键值对的艺术_python字典的用法

字典(dict)是Python的核心数据结构之一,与列表同属可变序列,但采用完全不同的存储方式:定义方式:使用花括号{}(列表使用方括号[])存储结构:以键值对(key-valuepair)...

python字典中如何添加键值对_python怎么往字典里添加键

添加键值对首先定义一个空字典1>>>dic={}直接对字典中不存在的key进行赋值来添加123>>>dic['name']='zhangsan'>>...

Spring Boot @ConfigurationProperties 详解与 Nacos 配置中心集成

本文将深入探讨SpringBoot中@ConfigurationProperties的详细用法,包括其语法细节、类型转换、复合类型处理、数据校验,以及与Nacos配置中心的集成方式。通过...

Dubbo概述_dubbo工作原理和机制

什么是RPCRPC是RemoteProcedureCall的缩写翻译为:远程过程调用目标是为了实现两台(多台)计算机\服务器,互相调用方法\通信的解决方案RPC的概念主要定义了两部分内容序列化协...

再见 Feign!推荐一款微服务间调用神器,跟 SpringCloud 绝配

在微服务项目中,如果我们想实现服务间调用,一般会选择Feign。之前介绍过一款HTTP客户端工具Retrofit,配合SpringBoot非常好用!其实Retrofit不仅支持普通的HTTP调用,还能...

SpringGateway 网关_spring 网关的作用

奈非框架简介早期(2020年前)奈非提供的微服务组件和框架受到了很多开发者的欢迎这些框架和SpringCloudAlibaba的对应关系我们要知道Nacos对应Eureka都是注册中心Dubbo...

Sentinel 限流详解-Sentinel与OpenFeign服务熔断那些事

SentinelResource我们使用到过这个注解,我们需要了解的是其中两个属性:value:资源名称,必填且唯一。@SentinelResource(value="test/get&#...

超详细MPLS学习指南 手把手带你实现IP与二层网络的无缝融合

大家晚上好,我是小老虎,今天的文章有点长,但是都是干货,耐心看下去,不会让你失望的哦!随着ASIC技术的发展,路由查找速度已经不是阻碍网络发展的瓶颈。这使得MPLS在提高转发速度方面不再具备明显的优势...

Cisco 尝试配置MPLS-V.P.N从开始到放弃

本人第一次接触这个协议,所以打算分两篇进行学习和记录,本文枯燥预警,配置命令在下一篇全为定义,其也是算我毕业设计的一个小挑战。新概念重点备注为什么选择该协议IPSecVPN都属于传统VPN传统VP...

MFC -- 网络通信编程_mfc编程教程

要买东西的时候,店家常常说,你要是真心买的,还能给你便宜,你看真心就是不怎么值钱。。。----网易云热评一、创建服务端1、新建一个控制台应用程序,添加源文件server2、添加代码框架#includ...

35W快充?2TB存储?iPhone14爆料汇总,不要再漫天吹15了

iPhone14都还没发布,关于iPhone15的消息却已经漫天飞,故加紧整理了关于iPhone14目前已爆出的消息。本文将从机型、刘海、屏幕、存储、芯片、拍照、信号、机身材质、充电口、快充、配色、价...

SpringCloud Alibaba(四) - Nacos 配置中心

1、环境搭建1.1依赖<!--nacos注册中心注解@EnableDiscoveryClient--><dependency><groupI...

Nacos注册中心最全详解(图文全面总结)

Nacos注册中心是微服务的核心组件,也是大厂经常考察的内容,下面我就重点来详解Nacos注册中心@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集》里面。微服务注册中...

网络技术领域端口号备忘录,受益匪浅 !

你好,这里是网络技术联盟站,我是瑞哥。网络端口是计算机网络中用于区分不同应用程序和服务的标识符。每个端口号都是一个16位的数字,范围从0到65535。网络端口的主要功能是帮助网络设备(如计算机和服务器...