Gorgonia为Go开发者打开了机器学习的大门
liuian 2025-05-08 19:41 63 浏览
在Python主导的机器学习领域,Go语言凭借其卓越的并发性能和编译型语言的效率优势逐渐崭露头角。Gorgonia作为Go语言生态中领先的机器学习库,提供了类似Theano/TensorFlow的计算图抽象。
官方文档:https://gorgonia.org/
开源地址:
https://github.com/gorgonia/gorgonia
- 可以进行自动微分
- 可以进行符号微分
- 可以执行梯度下降优化
- 提供多种便捷功能来帮助创建神经网络
- 相当快(与 Theano 和 TensorFlow 速度相当)
- 支持 CUDA/GPU 计算(OpenCL 尚不支持)
- 将支持分布式计算
获取库及其依赖项
$ go get gorgonia.org/gorgonia下面是一个使用 Gorgonia 构建的三层卷积网络的示例。使用的是 MNIST 数据集。
package main
import (
"flag"
"fmt"
"io/ioutil"
"log"
"math/rand"
"os"
"os/signal"
"runtime/pprof"
"syscall"
"net/http"
_ "net/http/pprof"
"github.com/pkg/errors"
"gorgonia.org/gorgonia"
"gorgonia.org/gorgonia/examples/mnist"
"gorgonia.org/tensor"
"time"
"gopkg.in/cheggaaa/pb.v1"
)
var (
epochs = flag.Int("epochs", 100, "Number of epochs to train for")
dataset = flag.String("dataset", "train", "Which dataset to train on? Valid options are \"train\" or \"test\"")
dtype = flag.String("dtype", "float64", "Which dtype to use")
batchsize = flag.Int("batchsize", 100, "Batch size")
cpuprofile = flag.String("cpuprofile", "", "CPU profiling")
)
const loc = "../testdata/mnist/"
var dt tensor.Dtype
func parseDtype() {
switch *dtype {
case "float64":
dt = tensor.Float64
case "float32":
dt = tensor.Float32
default:
log.Fatalf("Unknown dtype: %v", *dtype)
}
}
type sli struct {
start, end int
}
func (s sli) Start() int { return s.start }
func (s sli) End() int { return s.end }
func (s sli) Step() int { return 1 }
type convnet struct {
g *gorgonia.ExprGraph
w0, w1, w2, w3, w4 *gorgonia.Node // weights. the number at the back indicates which layer it's used for
d0, d1, d2, d3 float64 // dropout probabilities
out *gorgonia.Node
}
func newConvNet(g *gorgonia.ExprGraph) *convnet {
w0 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(32, 1, 3, 3), gorgonia.WithName("w0"), gorgonia.WithInit(gorgonia.GlorotN(1.0)))
w1 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(64, 32, 3, 3), gorgonia.WithName("w1"), gorgonia.WithInit(gorgonia.GlorotN(1.0)))
w2 := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(128, 64, 3, 3), gorgonia.WithName("w2"), gorgonia.WithInit(gorgonia.GlorotN(1.0)))
w3 := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(128*3*3, 625), gorgonia.WithName("w3"), gorgonia.WithInit(gorgonia.GlorotN(1.0)))
w4 := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(625, 10), gorgonia.WithName("w4"), gorgonia.WithInit(gorgonia.GlorotN(1.0)))
return &convnet{
g: g,
w0: w0,
w1: w1,
w2: w2,
w3: w3,
w4: w4,
d0: 0.2,
d1: 0.2,
d2: 0.2,
d3: 0.55,
}
}
func (m *convnet) learnables() gorgonia.Nodes {
return gorgonia.Nodes{m.w0, m.w1, m.w2, m.w3, m.w4}
}
// This function is particularly verbose for educational reasons. In reality, you'd wrap up the layers within a layer struct type and perform per-layer activations
func (m *convnet) fwd(x *gorgonia.Node) (err error) {
var c0, c1, c2, fc *gorgonia.Node
var a0, a1, a2, a3 *gorgonia.Node
var p0, p1, p2 *gorgonia.Node
var l0, l1, l2, l3 *gorgonia.Node
// LAYER 0
// here we convolve with stride = (1, 1) and padding = (1, 1),
// which is your bog standard convolution for convnet
if c0, err = gorgonia.Conv2d(x, m.w0, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {
return errors.Wrap(err, "Layer 0 Convolution failed")
}
if a0, err = gorgonia.Rectify(c0); err != nil {
return errors.Wrap(err, "Layer 0 activation failed")
}
if p0, err = gorgonia.MaxPool2D(a0, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {
return errors.Wrap(err, "Layer 0 Maxpooling failed")
}
log.Printf("p0 shape %v", p0.Shape())
if l0, err = gorgonia.Dropout(p0, m.d0); err != nil {
return errors.Wrap(err, "Unable to apply a dropout")
}
// Layer 1
if c1, err = gorgonia.Conv2d(l0, m.w1, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {
return errors.Wrap(err, "Layer 1 Convolution failed")
}
if a1, err = gorgonia.Rectify(c1); err != nil {
return errors.Wrap(err, "Layer 1 activation failed")
}
if p1, err = gorgonia.MaxPool2D(a1, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {
return errors.Wrap(err, "Layer 1 Maxpooling failed")
}
if l1, err = gorgonia.Dropout(p1, m.d1); err != nil {
return errors.Wrap(err, "Unable to apply a dropout to layer 1")
}
// Layer 2
if c2, err = gorgonia.Conv2d(l1, m.w2, tensor.Shape{3, 3}, []int{1, 1}, []int{1, 1}, []int{1, 1}); err != nil {
return errors.Wrap(err, "Layer 2 Convolution failed")
}
if a2, err = gorgonia.Rectify(c2); err != nil {
return errors.Wrap(err, "Layer 2 activation failed")
}
if p2, err = gorgonia.MaxPool2D(a2, tensor.Shape{2, 2}, []int{0, 0}, []int{2, 2}); err != nil {
return errors.Wrap(err, "Layer 2 Maxpooling failed")
}
log.Printf("p2 shape %v", p2.Shape())
var r2 *gorgonia.Node
b, c, h, w := p2.Shape()[0], p2.Shape()[1], p2.Shape()[2], p2.Shape()[3]
if r2, err = gorgonia.Reshape(p2, tensor.Shape{b, c * h * w}); err != nil {
return errors.Wrap(err, "Unable to reshape layer 2")
}
log.Printf("r2 shape %v", r2.Shape())
if l2, err = gorgonia.Dropout(r2, m.d2); err != nil {
return errors.Wrap(err, "Unable to apply a dropout on layer 2")
}
ioutil.WriteFile("tmp.dot", []byte(m.g.ToDot()), 0644)
// Layer 3
if fc, err = gorgonia.Mul(l2, m.w3); err != nil {
return errors.Wrapf(err, "Unable to multiply l2 and w3")
}
if a3, err = gorgonia.Rectify(fc); err != nil {
return errors.Wrapf(err, "Unable to activate fc")
}
if l3, err = gorgonia.Dropout(a3, m.d3); err != nil {
return errors.Wrapf(err, "Unable to apply a dropout on layer 3")
}
// output decode
var out *gorgonia.Node
if out, err = gorgonia.Mul(l3, m.w4); err != nil {
return errors.Wrapf(err, "Unable to multiply l3 and w4")
}
m.out, err = gorgonia.SoftMax(out)
return
}
func main() {
flag.Parse()
parseDtype()
rand.Seed(1337)
// intercept Ctrl+C
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT, syscall.SIGTERM)
doneChan := make(chan bool, 1)
var inputs, targets tensor.Tensor
var err error
go func() {
log.Println(http.ListenAndServe("localhost:6060", nil))
}()
trainOn := *dataset
if inputs, targets, err = mnist.Load(trainOn, loc, dt); err != nil {
log.Fatal(err)
}
// the data is in (numExamples, 784).
// In order to use a convnet, we need to massage the data
// into this format (batchsize, numberOfChannels, height, width).
//
// This translates into (numExamples, 1, 28, 28).
//
// This is because the convolution operators actually understand height and width.
//
// The 1 indicates that there is only one channel (MNIST data is black and white).
numExamples := inputs.Shape()[0]
bs := *batchsize
// todo - check bs not 0
if err := inputs.Reshape(numExamples, 1, 28, 28); err != nil {
log.Fatal(err)
}
g := gorgonia.NewGraph()
x := gorgonia.NewTensor(g, dt, 4, gorgonia.WithShape(bs, 1, 28, 28), gorgonia.WithName("x"))
y := gorgonia.NewMatrix(g, dt, gorgonia.WithShape(bs, 10), gorgonia.WithName("y"))
m := newConvNet(g)
if err = m.fwd(x); err != nil {
log.Fatalf("%+v", err)
}
losses := gorgonia.Must(gorgonia.HadamardProd(m.out, y))
cost := gorgonia.Must(gorgonia.Mean(losses))
cost = gorgonia.Must(gorgonia.Neg(cost))
// we wanna track costs
var costVal gorgonia.Value
gorgonia.Read(cost, &costVal)
// if _, err = gorgonia.Grad(cost, m.learnables()...); err != nil {
// log.Fatal(err)
// }
// debug
// ioutil.WriteFile("fullGraph.dot", []byte(g.ToDot()), 0644)
// log.Printf("%v", prog)
// logger := log.New(os.Stderr, "", 0)
// vm := gorgonia.NewTapeMachine(g, gorgonia.BindDualValues(m.learnables()...), gorgonia.WithLogger(logger), gorgonia.WithWatchlist())
prog, locMap, _ := gorgonia.Compile(g)
log.Printf("%v", prog)
vm := gorgonia.NewTapeMachine(g, gorgonia.WithPrecompiled(prog, locMap), gorgonia.BindDualValues(m.learnables()...))
solver := gorgonia.NewRMSPropSolver(gorgonia.WithBatchSize(float64(bs)))
defer vm.Close()
// pprof
// handlePprof(sigChan, doneChan)
var profiling bool
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
log.Fatal(err)
}
profiling = true
pprof.StartCPUProfile(f)
defer pprof.StopCPUProfile()
}
go cleanup(sigChan, doneChan, profiling)
batches := numExamples / bs
log.Printf("Batches %d", batches)
bar := pb.New(batches)
bar.SetRefreshRate(time.Second)
bar.SetMaxWidth(80)
for i := 0; i < *epochs; i++ {
bar.Prefix(fmt.Sprintf("Epoch %d", i))
bar.Set(0)
bar.Start()
for b := 0; b < batches; b++ {
start := b * bs
end := start + bs
if start >= numExamples {
break
}
if end > numExamples {
end = numExamples
}
var xVal, yVal tensor.Tensor
if xVal, err = inputs.Slice(sli{start, end}); err != nil {
log.Fatal("Unable to slice x")
}
if yVal, err = targets.Slice(sli{start, end}); err != nil {
log.Fatal("Unable to slice y")
}
if err = xVal.(*tensor.Dense).Reshape(bs, 1, 28, 28); err != nil {
log.Fatalf("Unable to reshape %v", err)
}
gorgonia.Let(x, xVal)
gorgonia.Let(y, yVal)
if err = vm.RunAll(); err != nil {
log.Fatalf("Failed at epoch %d: %v", i, err)
}
solver.Step(gorgonia.NodesToValueGrads(m.learnables()))
vm.Reset()
bar.Increment()
}
log.Printf("Epoch %d | cost %v", i, costVal)
}
}
func cleanup(sigChan chan os.Signal, doneChan chan bool, profiling bool) {
select {
case <-sigChan:
log.Println("EMERGENCY EXIT!")
if profiling {
log.Println("Stop profiling")
pprof.StopCPUProfile()
}
os.Exit(1)
case <-doneChan:
return
}
}
func handlePprof(sigChan chan os.Signal, doneChan chan bool) {
var profiling bool
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
log.Fatal(err)
}
profiling = true
pprof.StartCPUProfile(f)
defer pprof.StopCPUProfile()
}
go cleanup(sigChan, doneChan, profiling)
}使用 Gorgonia 的主要原因是开发人员的舒适度。如果您广泛使用 Go 技术栈,现在您可以在熟悉且舒适的环境中创建可用于生产的机器学习系统。
Gorgonia 目前性能相当出色——其速度与 PyTorch 和 Tensorflow 的 CPU 实现相当。由于 CGO 负担过重,GPU 实现的比较略显困难,但请放心,这是一个正在积极改进的领域。
相关推荐
- psd格式怎么编辑(psd格式怎么修改图片)
-
PSD格式的图像,可以使用Photoshop来打开。 PSD--PhotoshopDocument(PSD),是著名的Adobe公司的图像处理软件Photoshop的专用格式。这种格式可以存储P...
- xp系统恢复出厂设置步骤图解
-
电脑xp系统一键还原具体操作方法如下:1.在电脑里打开一键GHOST程序2.会看到有以前备份过的系统文件信息,默认选项是(一键恢复系统)项,点击(恢复)。3.点击(恢复)后弹出对话框,提示恢复系统必须...
- 联想哪款笔记本电脑最好(联想笔记本那个款好)
-
联想笔记本电脑有4个系列,分别是:1、昭阳笔记本电脑针对行业客户设计的高品质笔记本电脑。高端、高性能的同时具备多重可信赖的安全保护方案。昭阳系列针对行业客户提供按需定制服务。2、旭日笔记本电脑联想旭日...
- 测速网速在线测试(在线测速网络速度)
-
是指通过特定的软件或网站,对用户的网络连接速度进行测试和评估。这种测试通常包括上传速度、下载速度、延迟时间等指标,帮助用户了解自己网络连接的性能和稳定性。常见的网速在线测试网站或软件有Speedtes...
- win7旗舰精简版(win7精简版系统怎么样)
-
Windows7SP1旗舰版64位超级极度精简封装版,属于深度精简(1G ESD版),基于Windows7SP1旗舰版进行精简优化封装,集成最新安全补丁,特别适合高主频单核、低主频...
- 笔记本电脑分辨率怎么调(笔记本电脑分辨率怎么调最佳win10)
-
调整方法如下第1步:使用快捷键【win+i】打开系统设置,也可以点击左下角的开始菜单栏,点击【设置】进入。进入系统设置后,点击【系统】,进入详细设置界面。第2步:点击左侧选项栏中的【屏幕】,在右侧找到...
- 显卡驱动坏了怎么修复(显卡驱动失效 哪里出问题)
-
1.在此电脑右击,选择管理,进入管理设备;2.在管理设备窗口选择设备管理器,进入找到显示适配器,点击显示适配器前面的>符号或者双击展开子选项;3.在显卡子选项中选择你的显卡,右击选择属...
- 苹果一体机双系统怎么切换(苹果一体机双系统怎么切换按哪个键)
-
苹果一体机双系统切换方法如下:1.在苹果电脑的桌面中点击左上角的苹果图标,等待弹出序列栏。2.在弹出的下拉选项中点击系统偏好设置进入,等待跳转页面。3.跳转页面之后,在系统偏好设置的页面中点击启动磁盘...
- 2025爱奇艺vip激活码(爱奇艺会员官方激活码)
-
2022爱奇艺腾讯优酷会员,要根据具体的需求来选择。喜欢青春偶像剧类型的可以选择爱奇艺视频;喜欢一些自制综艺和自制剧的优酷视频会员是不错的选择;腾讯视频定位就是主打大IP剧和一些热门综艺的转播,一...
- ie浏览器手机版官网下载(ie游览器手机版下载)
-
如果您在使用IE浏览器时遇到无法下载的问题,以下是一些常见的解决办法:1.清除浏览器缓存:打开IE浏览器,依次点击工具(齿轮图标)->Internet选项->常规选项->...
- office2003属于什么软件(word2003属于什么软件)
-
是一套Office2003专业版的精简版,包含常用的Word、Excel、PowerPoint三个应用,使用者甚多。楼主如果有需要,请上电脑在本帖下载我的附件。我见过最多的,是2013或者以上的(因为...
- 电脑鼠标设置在哪里调(电脑鼠标在哪里去调)
-
电脑点击开始,在菜单中找到“控制面板”,点击“控制面板”进入,找到“鼠标”点击进入在打开的窗口中选择“指针”,选择指针样式,可点击浏览,找到文件夹下,查看哪些指针可选择。可按路径把喜欢的图标放进去找到...
- ie浏览器怎么下载到电脑桌面
-
工具/材料:电脑1、首先在电脑桌面里找到这台电脑,双击将它打开。2、打开之后,在里面找到吸C盘,双击将它打开。3、然后在C盘里面找到Programfiles这个文件,将此文件打开。4、打开之后,在里...
- 主板bios没有csm选项(主板没有csm怎么办)
-
对普通用户最大的区别是,符合标准的bootloader必须为UEFI保证二进制兼容。结果:32位UEFI固件只能启动32位操作系统。64位UEFI固件只能启动64位操作系统。由于历史因素、OEM政策,...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
