实战 | 如何制作数据报表并实现自动化?
liuian 2025-05-02 11:48 71 浏览
本章给大家演示一下在实际工作中如何结合 Pandas 库和 openpyxl 库来自动化生成报表。假设我们现在有如图 1 所示的数据集。
(图1)
现在需要根据这份数据集来制作每天的日报情况,主要包含以下 3 个方面。
- 当日各项指标的同/环比情况。
- 当日各省份创建订单量情况。
- 最近一段时间创建订单量趋势。
接下来分别实现。
01、当日各项指标的同/环比情况
我们先用 Pandas 库对数据进行计算处理,得到各指标的同/环比情况,具体实现代码如下。
#导入文件
import pandas as pd
df = pd.read_excel(r'D:\Data-Science\share\excel-python 报表自动化
\sale_data.xlsx')
#构造同时获取不同指标的函数
def get_data(date):
create_cnt = df[df['创建日期'] == date]['order_id'].count()
pay_cnt = df[df['付款日期'] == date]['order_id'].count()
receive_cnt = df[df['收货日期'] == date]['order_id'].count()
return_cnt = df[df['退款日期'] == date]['order_id'].count()
return create_cnt,pay_cnt,receive_cnt,return_cnt
#假设当日是 2021-04-11
#获取不同时间段的各指标值
df_view = pd.DataFrame([get_data('2021-04-11')
,get_data('2021-04-10')
,get_data('2021-04-04')]
,columns = ['创建订单量','付款订单量','收货订单量','退款订单量']
,index = ['当日','昨日','上周同期']).T
df_view['环比'] = df_view['当日'] / df_view['昨日'] - 1
df_view['同比'] = df_view['当日'] / df_view['上周同期'] - 1
df_view运行上面代码会得到如图 2 所示结果。
(图2)
上面只是得到了各指标的同/环比绝对数值,但是日报在发出去之前一般都要做一些格式调整,比如调整字体。而格式调整需要用到 openpyxl 库,我们将 Pandas 库中DataFrame 格式的数据转化为适用 openpyxl 库的数据格式,具体实现代码如下。
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
#创建空工作簿
wb = Workbook()
ws = wb.active
#将 DataFrame 格式数据转化为 openpyxl 格式
for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r)
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\核心指标_原始.xlsx')运行上面代码会得到如图 3 所示结果,可以看到原始的数据文件看起来是很混乱的。
(图3)
接下来,对上面的原始数据文件进行格式调整,具体调整代码如下。
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import colors
from openpyxl.styles import Font
from openpyxl.styles import PatternFill
from openpyxl.styles import Border, Side
from openpyxl.styles import Alignment
wb = Workbook()
ws = wb.active
for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r)
#第 2 行是空的,删除第 2 行
ws.delete_rows(2)
#给 A1 单元格进行赋值
ws['A1'] = '指标'
#插入一行作为标题行
ws.insert_rows(1)
ws['A1'] = '电商业务方向 2021/4/11 日报'
#将标题行的单元格进行合并
ws.merge_cells('A1:F1') #合并单元格
#对第 1 行至第 6 行的单元格进行格式设置
for row in ws[1:6]:
for c in row:
#字体设置
c.font = Font(name = '微软雅黑',size = 12)
#对齐方式设置
c.alignment = Alignment(horizontal = "center")
#边框线设置
c.border = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000"))
#对标题行和表头行进行特殊设置
for row in ws[1:2]:
for c in row:
c.font = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
c.fill = PatternFill(fill_type = 'solid',start_color ='FFFF6100')
#将环比和同比设置成百分比格式
for col in ws["E":"F"]:
for r in col:
r.number_format = '0.00%'
#调整列宽
ws.column_dimensions['A'].width = 13
ws.column_dimensions['E'].width = 10
#保存调整后的文件
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\核心指标.xlsx')运行上面代码会得到如图 4 所示结果。
(图4)
可以看到各项均已设置成功。
02、当日各省份创建订单量情况
我们同样先利用 Pandas 库处理得到当日各省份创建订单量的情况,具体实现代码如下。
df_province = pd.DataFrame(df[df['创建日期'] == '2021-04-11'].groupby('省份
')['order_id'].count())
df_province = df_province.reset_index()
df_province = df_province.sort_values(by = 'order_id',ascending = False)
df_province = df_province.rename(columns = {'order_id':'创建订单量'})
df_province运行上面代码会得到如图 5 所示结果。
(图5)
在得到各省份当日创建订单量的绝对数值之后,同样对其进行格式设置,具体设置代码如下。
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import colors
from openpyxl.styles import Font
from openpyxl.styles import PatternFill
from openpyxl.styles import Border, Side
from openpyxl.styles import Alignment
from openpyxl.formatting.rule import DataBarRule
wb = Workbook()
ws = wb.active
for r in dataframe_to_rows(df_province,index = False,header = True):
ws.append(r)
#对第 1 行至第 11 行的单元格进行设置
for row in ws[1:11]:
for c in row:
#字体设置
c.font = Font(name = '微软雅黑',size = 12)
#对齐方式设置
c.alignment = Alignment(horizontal = "center")
#边框线设置
c.border = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000"))
#设置进度条条件格式
rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None, maxLength=
None)
ws.conditional_formatting.add('B1:B11',rule)
#对第 1 行标题行进行设置
for c in ws[1]:
c.font = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
c.fill = PatternFill(fill_type = 'solid',start_color='FFFF6100')
#调整列宽
ws.column_dimensions['A'].width = 17
ws.column_dimensions['B'].width = 13
#保存调整后的文件
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\各省份销量情况.xlsx')运行上面代码会得到如图6所示结果。
(图6)
03、最近一段时间创建订单量趋势
一般用折线图反映某个指标的趋势情况,我们前面也讲过,在实际工作中一般用matplotlib 库或者其他可视化库进行图表绘制,并将其保存,然后利用 openpyxl 库将图表插入 Excel 中。
先利用 matplotlib 库进行绘图,具体实现代码如下。
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]='SimHei'#解决中文乱码
#设置图表大小
plt.figure(figsize = (10,6))
df.groupby('创建日期')['order_id'].count().plot()
plt.title('4.2 - 4.11 创建订单量分日趋势')
plt.xlabel('日期')
plt.ylabel('订单量')
#将图表保存到本地
plt.savefig(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量
分日趋势.png') 将保存到本地的图表插入 Excel 中,具体实现代码如下。
from openpyxl import Workbook
from openpyxl.drawing.image import Image
wb = Workbook()
ws = wb.active
img = Image(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'A1')
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量分日
趋势.xlsx')运行上面代码会得到如图 7 所示结果,可以看到图表已经被成功插入 Excel 中。
(图7)
04、将不同的结果进行合并
上面我们是把每一部分都单独拆开来实现的,最后存储在了不同的 Excel 文件中。
当然,有时放在不同文件中会比较麻烦,就需要把这些结果合并在同一个 Excel 的相同 Sheet 或者不同 Sheet 中。
将不同的结果合并到同一个 Sheet 中
将不同的结果合并到同一个 Sheet 中的难点在于不同表结果的结构不一样,而且需要在不同结果之间进行留白。
首先,插入核心指标表 df_review,插入方式与单独插入是一样的,具体代码如下。
for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r)然后,插入各省份情况表 df_province,因为 append()方法默认是从第 1 行开始插入的,而我们前面几行已经有 df_view 表的数据了,所以就不能用 append()方法插入,而只能通过遍历每一个单元格的方式。
那我们怎么知道要遍历哪些单元格呢?核心是需要知道遍历开始的行/列和遍历结束的行/列。
遍历开始的行 = df_view 表占据的行 + 留白的行(一般表与表之间留 2 行) + 1
遍历结束的行 = 遍历开始的行 + df_province 表占据的行
遍历开始的列 = 1
遍历结束的列 = df_province 表占据的列
又因为 DataFrame 中获取列名的方式和获取具体值的方式不太一样,所以我们需要分别插入,先插入列名,具体代码如下。
for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 5,column = 1 + j).value = df_province.columns[r]
df_province.shape[1]表示获取 df_province 表有多少列,df_view.shape[0]表示获取
df_view 表有多少行。前面说过,遍历开始的行是表占据的行加上留白的行再加 1,一般留白的行是 2,
可是这里为什么是 df_view.shape[0] + 5 呢?因为 df_view.shape[0]是不包括列名行的,而且在插入 Excel 中时会默认增加 1 行空行,所以需要在留白行的基础上再增加 2 行,
即 2 + 2 + 1 = 5。
因为 range()函数默认是从 0 开始的,而 Excel 中的列是从 1 开始的,所以 column需要加 1。
上面的代码只是把 df_province 表的列名插入进来,接下来插入具体的值,方式与插入列名的方式一致,只不过需要在列名的下一行开始插入,具体代码如下。
for i in range(df_province.shape[0]):
for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 6 + i,column = 1 + j).value =
df_province.iloc[i,j]接下来,插入图片,插入图片的方式与前面的单独插入方法是一致的,具体代码如下。
#插入图片
img = Image(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'G1')将所有的数据插入以后就该对这些数据进行格式设置了,因为不同表的结构不一样,所以我们没法直接批量对所有单元格进行格式设置,只能按范围分别进行设置,而不同范围的格式可能是一样的,所以我们先预设一些格式变量,这样后面用到的时候直接调取这些变量即可,减少代码冗余,具体代码如下。
#格式预设
#表头字体设置
title_Font_style = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
#普通内容字体设置
plain_Font_style = Font(name = '微软雅黑',size = 12)
Alignment_style = Alignment(horizontal = "center")
Border_style = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000"))
PatternFill_style = PatternFill(fill_type = 'solid',start_color ='FFFF6100')格式预设完之后就可以对各个范围分别进行格式设置了,具体代码如下。
#对 A1 至 F6 范围内的单元格进行设置
for row in ws['A1':'F6']:
for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style
#对第 1 行和第 2 行的单元格进行设置
for row in ws[1:2]:
for c in row:
c.font = title_Font_style
c.fill = PatternFill_style
#对 E 列和 F 列的单元格进行设置
for col in ws["E":"F"]:
for r in col:
r.number_format = '0.00%'
#对 A9 至 B19 范围内的单元格进行设置
for row in ws['A9':'B19']:
for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style
#对 A9 至 B9 范围内的单元格进行设置
for row in ws['A9':'B9']:
for c in row:
c.font = title_Font_style
c.fill = PatternFill_style
#设置进度条
rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None,
maxLength=None)
ws.conditional_formatting.add('B10:B19',rule)
#调整列宽
ws.column_dimensions['A'].width = 17
ws.column_dimensions['B'].width = 13
ws.column_dimensions['E'].width = 10 最后,将上面所有代码片段合并在一起,就是将不同的结果文件合并到同一个Sheet 中的完整代码,具体如下。
Sheet 中的完整代码,具体如下。
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import colors
from openpyxl.styles import Font
from openpyxl.styles import PatternFill
from openpyxl.styles import Border, Side
from openpyxl.styles import Alignment
from openpyxl.formatting.rule import DataBarRule
wb = Workbook()
ws = wb.active
#先将核心指标 df_view 表插入进去
for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r)
#再将各省份情况 df_province 表插入进去
#先将表头插入
for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 5,column = 1 + j).value = df_province.columns[r]
#再把具体的值插入
#先遍历行
for i in range(df_province.shape[0]):
#再遍历列
for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 6 + i,column = 1 + j).value = df_province.
iloc[i,j]
#插入图片
img = Image(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'G1')
##---格式调整---
ws.delete_rows(2)
ws['A1'] = '指标'
ws.insert_rows(1)
ws['A1'] = '电商业务方向 2021/4/11 日报'
ws.merge_cells('A1:F1') #合并单元格
#格式预设
#表头字体设置
title_Font_style = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
#普通内容字体设置
plain_Font_style = Font(name = '微软雅黑',size = 12)
Alignment_style = Alignment(horizontal = "center")
Border_style = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000"))
PatternFill_style = PatternFill(fill_type = 'solid',start_color='FFFF6100')
#对 A1 至 F6 范围内的单元格进行设置
for row in ws['A1':'F6']:
for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style
#对第 1 行和第 2 行的单元格进行设置
for row in ws[1:2]:
for c in row:
c.font = title_Font_style
c.fill = PatternFill_style
#对 E 列和 F 列的单元格进行设置
for col in ws["E":"F"]:
for r in col:
r.number_format = '0.00%'
#对 A9 至 B19 范围内的单元格进行设置
for row in ws['A9':'B19']:
for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style
#对 A9 至 B9 范围内的单元格进行设置
for row in ws['A9':'B9']:
for c in row:
c.font = title_Font_style
c.fill = PatternFill_style
#设置进度条
rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None, maxLength=
None)
ws.conditional_formatting.add('B10:B19',rule)
#调整列宽
ws.column_dimensions['A'].width = 17
ws.column_dimensions['B'].width = 13
ws.column_dimensions['E'].width = 10
#将结果文件进行保存
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\多结果合并.xlsx')运行上面代码,会得到如图 8 所示结果,可以看到不同结果文件合并在了一起,并且各自的格式设置完好。
(图8)
将不同的结果合并到同一工作簿的不同 Sheet 中
将不同的结果合并到同一工作簿的不同 Sheet 中比较好实现,只需要新建几个Sheet,然后对不同的 Sheet 插入数据即可,具体实现代码如下。
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
wb = Workbook()
ws = wb.active
ws1 = wb.create_sheet()
ws2 = wb.create_sheet()
#更改 sheet 的名称
ws.title = "核心指标"
ws1.title = "各省份销情况"
ws2.title = "分日趋势"
for r1 in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r1)
for r2 in dataframe_to_rows(df_province,index = False,header = True):
ws1.append(r2)
img = Image(r'D:\Data-Science\share\excel-python 报表自动化\4.2 - 4.11 创建订单量
分日趋势.png')
ws2.add_image(img, 'A1')
wb.save(r'D:\Data-Science\share\excel-python 报表自动化\多结果合并_多 Sheet.xlsx')运行上面代码,会得到如图 9 所示结果,可以看到创建了 3 个 Sheet,且不同的内容被保存到了不同 Sheet 中。
(图9)
本文节选自《对比Excel,轻松学习Python报表自动化》一书,更多关于使用Python进行报表自动化的内容,欢迎阅读本书!
相关推荐
- 搭建一个20人的办公网络(适用于20多人的小型办公网络环境)
-
楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...
- 笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)
-
1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...
- 汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)
-
使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...
- xpsp3安装版系统下载(windowsxpsp3安装教程)
-
xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...
- 没有备份的手机数据怎么恢复
-
手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。 2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。 3、...
- 电脑怎么激活windows11专业版
-
win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...
- 华为手机助手下载官网(华为手机助手app下载专区)
-
华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...
- 光纤线断了怎么接(宽带光纤线断了怎么接)
-
宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...
- win7旗舰版和专业版区别(win7旗舰版跟专业版)
-
1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...
- 万能连接钥匙(万能wifi连接钥匙下载)
-
1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...
- 雨林木风音乐叫什么(雨林木风是啥)
-
雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...
- aics6序列号永久序列号(aics6破解序列号)
-
关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...
- 手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)
-
答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
