人工智能实战:如何完成支持向量机算法的调参工作(附代码)
liuian 2025-05-02 11:48 26 浏览
专栏推荐
正文
我们已经做出了线性可分以及线性不可分的支持向量机,但是我们不知道究竟什么样的参数C和核函数参数γ更加的适合我们的当前模型,一个好的参数更加有利于我们的模型,所以如何才能选择。这篇文章的目的就是演示如何才能选出我们所要的那个参数,我将使用两种方法。方法一就是手动选出(逐渐遍历的方法),方法二就是使用sklearn封装好的机器学习库来完成方法一的任务。
我现在有一个数据集,它的所有变量是这样的
其中x,y我们把它用作是训练集数据,然后把Xval,yval它当作测试集数据。我们现在先来获取到训练集数据以及测试集数据。
training = pd.DataFrame(mat.get('X'), columns=['X1', 'X2'])
training['y'] = mat.get('y')
cv = pd.DataFrame(mat.get('Xval'), columns=['X1', 'X2'])
cv['y'] = mat.get('yval')
我们现在已经获取到了训练集training和测试集cv。
现在我们要获取到C和γ的各种组合,用各种组合去不断地尝试究竟哪一种地组合更好。那么我们先来完成对这二者进行组合。
candidate = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
这是我们的可能地取值,然后我们对其进行两两地组合
combination = [(C, gamma) for C in candidate for gamma in candidate]
我们输出combination为:
两两之间任意地组合,那么一共有81中组合,这就是我们要从中间选出究竟哪一种组合才是最好地那个。
下面我们对这些组合进行遍历,然后用每一组进行拟合一个svm的训练器,拟合之后我们使用测试集进行测试,把每一个测试的精确度保存起来,这样我们就可以根据精确度最高的那个来选出我们所想要的最好的那个组合了。
search = [] for C, gamma in combination: svc = svm.SVC(C=C, gamma=gamma) svc.fit(training[['X1', 'X2']], training['y']) search.append(svc.score(cv[['X1', 'X2']], cv['y']))
有了每一个组合的对测试集的精确度的结果之后,我们只需要找出精确度最好的那一个组合,就是我们所要的那个组合。
best_score = search[np.argmax(search)] best_param = combination[np.argmax(search)] np.argmax(search)
输出精确度最大的那个的小标。同时这个下标也是search和combination对应的下标。那么这个就是我们所要找的best_score(最好的组合的精确度)以及最好的组合(best_param)。
print(best_score) print(best_param)
输出二者的结果分别为:
0.965
(0.3, 100)
可以知道当我们的C=0.3,而γ=100的时候可能是最好的,我们要确定此时的参数组合形成的模型的分类指标
from sklearn import metrics
best_svc = svm.SVC(C=0.3, gamma=100) best_svc.fit(training[['X1', 'X2']], training['y']) ypred = best_svc.predict(cv[['X1', 'X2']]) print(metrics.classification_report(cv['y'], ypred))
我们现在是我们当前参数组合中最好的模型了,那么我们使用
metrics.classification_report用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。
该方法的主要参数是:
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。
digits:int,输出浮点值的位数.
输出的结果为:
其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和)
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1值.
这样我们使用的是for循环的方式找到了最好的模型,其实我们本可以不这样,因为我们可以使用sklearn库使用封装好的交叉验证的程序来完成这个操作。
if __name__ == "__main__": parameters = {'C': candidate, 'gamma': candidate} svc = svm.SVC() clf = GridSearchCV(svc, parameters, n_jobs=-1) clf.fit(training[['X1', 'X2']], training['y']) print (clf.best_params_) print (clf.best_score_) ypred = clf.predict(cv[['X1', 'X2']]) print(metrics.classification_report(cv['y'], ypred))
因为交叉验证是使用的多线程所以我们使用一个main方法来把它给套起来,然后他就会组合多种parameters进行遍历选出最好的那个
全部代码:
from sklearn import svm
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import numpy as np
import pandas as pd
import scipy.io as sio
mat = sio.loadmat('ex6data3.mat')
print(mat.keys())
training = pd.DataFrame(mat.get('X'), columns=['X1', 'X2'])
training['y'] = mat.get('y')
cv = pd.DataFrame(mat.get('Xval'), columns=['X1', 'X2'])
cv['y'] = mat.get('yval')
candidate = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
combination = [(C, gamma) for C in candidate for gamma in candidate]
search = []
for C, gamma in combination:
svc = svm.SVC(C=C, gamma=gamma)
svc.fit(training[['X1', 'X2']], training['y'])
search.append(svc.score(cv[['X1', 'X2']], cv['y']))
best_score = search[np.argmax(search)]
best_param = combination[np.argmax(search)]
best_svc = svm.SVC(C=0.3, gamma=100)
best_svc.fit(training[['X1', 'X2']], training['y'])
ypred = best_svc.predict(cv[['X1', 'X2']])
print(metrics.classification_report(cv['y'], ypred))
if __name__ == "__main__":
parameters = {'C': candidate, 'gamma': candidate}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters, n_jobs=-1)
clf.fit(training[['X1', 'X2']], training['y'])
print (clf.best_params_)
print (clf.best_score_)
ypred = clf.predict(cv[['X1', 'X2']])
print(metrics.classification_report(cv['y'], ypred))
相关推荐
- eino v0.4.5版本深度解析:接口类型处理优化与错误机制全面升级
-
近日,eino框架发布了v0.4.5版本,该版本在错误处理、类型安全、流处理机制以及代理配置注释等方面进行了多项优化与修复。本次更新共包含6个提交,涉及10个文件的修改,由2位贡献者共同完成。本文将详...
- SpringBoot异常处理_springboot异常注解
-
在SpringBoot中,异常处理是构建健壮、可维护Web应用的关键部分。良好的异常处理机制可以统一返回格式、提升用户体验、便于调试和监控。以下是SpringBoot中处理异常的完整指...
- Jenkins运维之路(Jenkins流水线改造Day02-1-容器项目)
-
这回对线上容器服务器的流水线进行了一定的改造来满足目前线上的需求,还是会将所有的自动化脚本都放置到代码库中统一管理,我感觉一章不一定写的完,所以先给标题加了个-1,话不多说开干1.本次流水线的流程设计...
- 告别宕机!零基础搭建服务器监控告警系统!小白也能学会!
-
前言本文将带你从零开始,一步步搭建一个完整的服务器指标监控与邮件告警系统,使用的技术栈均为业界主流、稳定可靠的开源工具:Prometheus:云原生时代的监控王者,擅长指标采集与告警规则定义Node_...
- httprunner实战接口测试笔记,拿走不谢
-
每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01开始安装跟创建项目pipinstallhttprunne...
- 基于JMeter的性能压测平台实现_jmeter压测方案
-
这篇文章已经是两年前写的,短短两年时间,JMeter开源应用技术的发展已经是翻天覆地,最初由github开源项目zyanycall/stressTestPlatform形成的这款测试工具也开始慢...
- 12K+ Star!新一代的开源持续测试工具!
-
大家好,我是Java陈序员。在企业软件研发的持续交付流程中,测试环节往往是影响效率的关键瓶颈,用例管理混乱、接口调试复杂、团队协作不畅、与DevOps流程脱节等问题都能影响软件交付。今天,给大家...
- Spring Boot3 中分库分表之后如何合并查询
-
在当今互联网应用飞速发展的时代,数据量呈爆发式增长。对于互联网软件开发人员而言,如何高效管理和查询海量数据成为了一项关键挑战。分库分表技术应运而生,它能有效缓解单库单表数据量过大带来的性能瓶颈。而在...
- 离线在docker镜像方式部署ragflow0.17.2
-
经常项目上会出现不能连外网的情况,要怎么使用ragflow镜像部署呢,这里提供详细的步骤。1、下载基础镜像根据docker-compose-base.yml及docker-compose.yml中的i...
- 看,教你手写一个最简单的SpringBoot Starter
-
何为Starter?想必大家都使用过SpringBoot,在SpringBoot项目中,使用最多的无非就是各种各样的Starter了。那何为Starter呢?你可以理解为一个可拔插式...
- 《群星stellaris》军事基地跳出怎么办?解决方法一览
-
《群星stellaris》军事基地跳出情况有些小伙伴出现过这种情况,究竟该怎么解决呢?玩家“gmjdadk”分享的自己的解决方法,看看能不能解决。我用英文原版、德语、法语和俄语四个版本对比了一下,结果...
- 数据开发工具dbt手拉手教程-03.定义数据源模型
-
本章节介绍在dbt项目中,如何定义数据源模型。定义并引入数据源通过Extract和Load方式加载到仓库中的数据,可以使用dbt中的sources组件进行定义和描述。通过在dbt中将这些数据集(表)声...
- docker compose 常用命令手册_docker-compose init
-
以下是DockerCompose常用命令手册,按生命周期管理、服务运维、构建配置、扩缩容、调试工具分类,附带参数解析、示例和关键说明,覆盖多容器编排核心场景:一、生命周期管理(核心命令...
- RagFlow与DeepSeek R1本地知识库搭建详细步骤及代码实现
-
一、环境准备硬件要求独立显卡(建议NVIDIAGPU,8GB显存以上)内存16GB以上,推荐32GB(处理大规模文档时更高效)SSD硬盘(加速文档解析与检索)软件安装bash#必装组件Docker...
- Docker Compose 配置更新指南_docker-compose配置
-
高效管理容器配置变更的最佳实践方法重启范围保留数据卷适用场景docker-composeup-d变更的服务常规配置更新--force-recreate指定/所有服务强制重建down→up流程...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)