Python 数据分析——利用Pandas进行分组统计
liuian 2025-05-02 11:47 19 浏览
话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计。
一、分组、应用和聚合
“分而治之”(Divide and Conquer)方法(又称为“分治术”),是有效算法设计中普遍采用的一种技术。所谓“分而治之”,就是把一个复杂的算法问题按一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的解,把各部分的解组成整个问题的解。这种朴素的思想来源于人们生活与工作的经验,也完全适用于技术领域。以海量数据处理为例,由于数据量太大,导致无法在较短时间内迅速解决,或无法一次性装入内存。那么如何解决该问题呢?无非只有一个办法——大而化小。规模太大,就把规模大的化为规模小的,各个击破。例如,从海量日志数据中提取出某日访问次数最多的那个IP,把整个大文件映射为1000个小文件,再找出每个小文件中出现频率最高的IP及相应的频率,然后从这1000个最大的IP中,找出那个频率最高的IP,即为所求。这也是大数据编程模型MapReduce的基本思想。
Pandas中同样存在着“分而治之”的思想,即Pandas的GroupBy,从英文的字面意义上理解就是“根据(By)一定的规则进行分组(Group)”。它的作用就是通过一定的规则将一个数据集划分成若干个小的区域,然后针对若干个小区域进行数据处理。简单地说,GroupBy就是Split-Apply-Combine,如图1所示。首先将数据按照不同的key进行分割(Split),然后将求和函数sum()应用(Apply)于各组,最后再将数据合并(Combine)到一起,得到最终结果。
图1 Split-Apply-Combine
二、Pandas中的GroupBy操作
本节主要以Seaborn中自带的tips数据集为例对GroupBy进行讲解。数据前5行内容如下。
2.1单列数据分组统计
以tips数据集为例,如果想按照不同性别来对数据进行统计,应该怎么办呢?首先我们需要创建一个DataFrameGroupBy对象,代码如下。
此时我们得到的只是一个DataFrameGroupBy对象,也就是只完成了图1中的Split工作,接下来要做的是Apply和Combine。例如,我们想知道tips分组里面男性(Male)和女性(Female)各有多少,代码如下。
size()即是DataFrameGroupBy对象提供的一个分组聚合函数,该函数将自动统计Male组和Female组中的数据大小,之后将其汇总到一个新的Series中,可以通过如下代码进行验证。
上面的第二段代码对分组对象中的组依次进行了遍历。除了对组进行遍历,我们还可以通过get_group()函数来获取指定组,例如:
在完成分组后,我们就可以针对各组进行聚合运算。例如,我们想看tips数据集中男性、女性买单时总账单、小费以及用餐人数的均值,那么可以采用如下代码。
上述代码对分组中每列都进行聚合运算,有的时候我们只需要对某一列进行聚合运算。例如,我们只想统计男性组与女性组的总账单均值,可以采用如下代码。
DataFrameGroupBy对象除了提供了前面已经用过的聚合函数外,还提供了如下的聚合函数。
· sum():求和
· mean():求平均值
· count():统计所有非空值
· size():统计所有值
· max():求最大值
· min():求最小值
· std():计算标准差
这里重点讲一下size()和count()的区别。有如下数据:
如果分别使用size()和count()这两个聚合函数,得到的结果将不同。
得到不同结果的原因是由于count()函数不会统计空值,而size()函数只是统计组的大小,不管取值是否为空。除了直接对分组对象使用聚合函数来完成分组统计,我们还可以使用agg()或aggregate()函数来进行分组统计,例如下面的代码与使用mean()函数效果完全一样。
既然两者效果一样,为什么Pandas中要提供agg()函数呢?这是因为agg()函数提供了更好的灵活性,我们如果想同时统计各分组的小费均值、最小值、最大值,只需要执行一次agg()函数就可以完成,代码如下。
其中,agg()函数中的参数['mean','min','max']即是聚合函数列表。此外,我们还可以对聚合后的列进行重命名,例如:
与前一段代码不同的是,这里以元组的方式来指定聚合函数。例如,('tip_mean','mean')代表了我们要执行的聚合函数为mean,聚合运算后得到的列名为tip_mean。如果完成聚合后,想将Index去掉,那么可以直接使用reset_index()函数,代码如下。
2.2多列数据分组统计
上一小节是将sex列作为分组基准,如果想同时基于sex列和day列进行分组统计男女每天的消费,可采用如下代码。
上述两段代码分别统计了tips数据集中男性与女性每天总就餐次数以及账单总额。与2.1节类似,我们也可以利用如下代码对聚合后的列进行重命名,如图2所示。
图2 重命名结果
Pandas的分组统计还提供了更加灵活的方式,对于分组后的对象,我们还可以针对不同的列进行不同聚合运算。例如针对tip列和total_bill列,我们想统计不同的内容,那么可以采用如下代码。
统计结果如图3所示。
图3 统计结果
输出数据出现了多级Index,可以用如下代码验证。
其中,第一级Index为tip和total_bill,第二级则是avg_tip、max_tip、avg_bill。如果我们想对其进行修改,可以直接利用修改列名的方式来完成,代码如下。
2.3使用自定义函数进行分组统计
如果Pandas中提供的聚合函数不能满足我们的要求,我们还可以自己编写自定义函数来完成聚合功能。例如,我们想统计男性组与女性组中账单最大值和最小值的差异,可以利用如下代码完成。
上述代码定义了一个lambda函数来完成各组中账单最大值与最小值差的计算。除了对某列进行聚合运算,还可以对不同列定义不同的自定义函数,示例如下。
lambda函数通常用于相对简单的函数定义,如果是复杂一点的,我们可以自己定义新函数后使用。如下代码定义了一个名为max_deviation()的函数。
上述代码中max_deviation()函数的参数s实际对应于分组对象的tip列,因此s.mean()是对该列求平均。在有的情况下,自定义函数还可以带参数,如果我们想知道男性和女性组总账单中金额为30~60的比例,可以采用如下代码。
上述代码中bill_between()函数中的参数,直接通过agg(bill_between,30,60)函数传入。
2.4数据过滤与变换
有的时候我们对数据进行分组不是为了分组统计,而是为了对数据进行过滤或变换,此时可以使用filter()和transform()函数来完成。例如,我们想知道tips数据集中每天消费总额大于20的账单,代码如下。
数据过滤结果如图4所示。
图4 数据过滤
上述代码首先对数据按day进行分组,x['total_bill'].mean()20将过滤消费总额大于20的数据。如果我们需要对分组数据进行变换,则使用transform()函数。例如,如下代码对按day分组的数据求均值后,将其作为新列添加回原来的df_tips中,结果如图5所示。
图7.5 数据变换
除了filter()和transform()操作,我们也可以对组对象执行apply操作。例如,我们可以按性别分组后计算小费占总账单的比例,代码如下。
相关推荐
- 使用Assembly打包和部署Spring Boot工程
-
SpringBoot项目的2种部署方式目前来说,SpringBoot项目有如下2种常见的部署方式一种是使用docker容器去部署。将SpringBoot的应用构建成一个docke...
- java高级用法之:调用本地方法的利器JNA
-
简介JAVA是可以调用本地方法的,官方提供的调用方式叫做JNI,全称叫做javanativeinterface。要想使用JNI,我们需要在JAVA代码中定义native方法,然后通过javah命令...
- Linux中如何通过Shell脚本来控制Spring Boot的Jar包启停服务?
-
SpringBoot项目在为开发者带来方便的同时,也带来了一个新的问题就是Jar包如何启动?在一般情况下我们都是采用了最为经典的java-jar命令来进行启动。然后通过ps命令找到对应的应用线程通...
- 牛逼!自己手写一个热加载(人民币手写符号一个横还是两个横)
-
热加载:在不停止程序运行的情况下,对类(对象)的动态替换JavaClassLoader简述Java中的类从被加载到内存中到卸载出内存为止,一共经历了七个阶段:加载、验证、准备、解析、初始化、使用、...
- java 错误: 找不到或无法加载主类?看看怎么解决吧!
-
问题扫述:项目名称调整,由原来的com.mp.qms.report.biz调整为com.mp.busicen.mec.qms.report.biz后。项目在IDEA直接运行,但打包部署到服务器...
- 如何将 Spring Boot 工程打包成独立的可执行 JAR 包
-
导语:通过将SpringBoot项目打包成独立的可执行JAR包,可以方便地在任何支持Java环境的机器上运行项目。本文将详细介绍如何通过Maven构建插件将SpringBoot...
- class 增量发包改造为 jar 包方式发布
-
大纲class增量发包介绍项目目录结构介绍jar包方式发布落地方案class增量发包介绍当前项目的迭代修复都是通过class增量包来发版本的将改动的代码class增量打包,如下图cla...
- Jar启动和IDE里启动Sprintboot的区别
-
想聊明白这个问题,需要补充一些前提条件,比如Fatjar、类加载机制等1、Fatjar我们在开发业务程序的时候,经常需要引用第三方的jar包,最终程序开发完成之后,通过打包程序,会把自己的代码和三...
- Java 20年,以后将往哪儿走?(java还能流行多久)
-
在今年的Java20周年的庆祝大会中,JavaOne2015的中心议题是“Java的20年”。甲骨文公司Java平台软件开发部的副总裁GeorgesSaab的主题演讲就将关注点放在了java...
- Spring Boot Jar 包秒变 Docker 镜像实现多环境部署
-
你是否在互联网大厂后端开发工作中,遇到过这样的困扰?当完成一个SpringBoot项目开发,准备将Jar包部署到不同环境时,却发现各个环境依赖不同、配置复杂,部署过程繁琐又容易出错,不仅耗费...
- 从0开始,让你的Spring Boot项目跑在Linux服务器
-
1搭建Linux服务器1.1购买阿里云服务器或安装虚拟机这里建议是CentOS7.X或CentOS8.X,当然其他的Linux如deepin、Ubuntu也可以,只是软件环境的安装包和安装方式...
- 【技术】Maven 上传第三方jar包到私服
-
通过nexus后台上传私服以NexusRepositoryManagerOSS2.14.5-02为例。登录nexus后台。定义Maven坐标Maven坐标有两种方式:1.自定义参数;2....
- JVM参数、main方法的args参数使用
-
一、前言我们知道JVM参数分为自定义参数、JVM系统参数,Javamain方法的参数。今天就谈谈怎么使用吧。二、查看jvm参数定义自定义参数我们打开cmd窗口,输入java,就能看到自定义参数的格式...
- Maven项目如何发布jar包到Nexus私服
-
Maven项目发布jar包到Nexus私服在编码过程中,有些通用的代码模块,有时候我们不想通过复制粘贴来粗暴地复用。因为这样不仅体现不了变化,也不利于统一管理。这里我们使用mavendeploy的方...
- 干货丨Hadoop安装步骤!详解各目录内容及作用
-
Hadoop是Apache基金会面向全球开源的产品之一,任何用户都可以从ApacheHadoop官网下载使用。今天,播妞将以编写时较为稳定的Hadoop2.7.4版本为例,详细讲解Hadoop的安...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
-
- 使用Assembly打包和部署Spring Boot工程
- java高级用法之:调用本地方法的利器JNA
- Linux中如何通过Shell脚本来控制Spring Boot的Jar包启停服务?
- 牛逼!自己手写一个热加载(人民币手写符号一个横还是两个横)
- java 错误: 找不到或无法加载主类?看看怎么解决吧!
- 如何将 Spring Boot 工程打包成独立的可执行 JAR 包
- class 增量发包改造为 jar 包方式发布
- Jar启动和IDE里启动Sprintboot的区别
- Java 20年,以后将往哪儿走?(java还能流行多久)
- Spring Boot Jar 包秒变 Docker 镜像实现多环境部署
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)