Tensorflow 使用预训练模型训练的完整流程
liuian 2025-04-11 01:00 36 浏览
前面已经介绍了 深度学习框架Tensorflow 的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。
1.选择预训练模型
1.1 下载预训练模型
首先需要在Tensorflow 官网下载模型models-master,下载后在本地解压,找到
models/research/object_detection/g3doc/tf1_detection_zoo.md,用文本的方式打开可以看到很多目标检测模型的下载链接,根据链接地址可下载预训练模型(以目标检测为例)。
下载预训练模型,
1.2 COCO数据集介绍
模型名称:
ssd_mobilenet_v1_coco_2018_01_28 。v1 表示版本用于tf1,coco 是数据集名称。顺便提一下,COCO数据集是微软发布的一个可以用来进行图像识别训练的数据集,图像中的目标都经过精确的segmentation进行位置定位,COCO数据集包括90类目标。Object Detection API默认提供了5个预训练模型,都是使用COCO数据集训练的,分别为
- SSD + MobileNet
- Inception V2 + SSD
- ResNet101 + R-CNN
- ResNet101 + Faster R-CNN
- Inception-ResNet V2 + Faster R-CNN
有了这些储备知识,在下一步我们修改预训练模型配置时,有个准备。
2.参数设置
2.1 解压模型文件
2.2 修改模型配置文件
用文本的方式 打开 pipline.config,修改如下内容,
1)分类的数目
num_classes: 3
----分类数目需要与你样本标注的类型数量保持一致
2)一次训练所选取的样本数
batch_size: 8
----batch size 指的是 一次训练所选取的样本数,根据电脑硬件配置做适当更改,显存较小可以适当减小该值
3)预训练模型ckpt文件的位置
fine_tune_checkpoint: "/home/XXX/modelfiles/model.ckpt"
----modelfiles 就是 预训练模型的别名,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表,包括了model.ckpt.data;model.ckpt.index;model.ckpt.meta
4)训练数据和标签文件保存路径
train_input_reader: {
tf_record_input_reader {
input_path: "/home/XXX/record/train.record"
}
label_map_path: "/home/XXX/label_map.pbtxt"
}
5)测试数据保存位置和相应标签文件路径
# shuffle表示是否随机选取测试图片
eval_input_reader: {
tf_record_input_reader {
input_path:"/home/XXX/record/test.record"
}
label_map_path: "/home/XXX/label_map.pbtxt"
shuffle: false
num_readers: 1
}
设置训练集和测试集 数据存放路径,推荐绝对路径
6)训练的步数
num_steps: 200000
3.启动训练
配置文件设置完成后,准备启动训练了。进入model_main.py 所在的目录,
用如下格式的指令启动训练,
python model_main.py --logtostderr --pipeline_config_path=/XXX/XXX/ssd_mobilenet_v2_oid_v4.config --train_dir=/XXX/XXX/XXX/train_dir --model_dir=/XXX/XXX/XXX/train_dir/trained_ckpt
训练次数已经在配置文件中设置过了,指令中可以不必添加。
4.Tensorboard 训练过程可视化
训练启动后,可以再打开一个终端,用如下指令查看训练详情,
tensorboard --logdir=/XXX/XXX/train_dir/trained_ckpt --host=127.0.0.1
5.导出模型
模型收敛后可用ctrl+z 退出训练。之后用如下指令到处已训练好的模型,
python export_inference_graph.py --input_type image_tensor --pipeline_config_path ./XXX/ssd_mobilenet_v2_oid_v4.config --trained_checkpoint_prefix ./XXX/train_dir/trained_ckpt/model.ckpt-124467 --output_directory ./ssd_mobilenet_v2_oid_v4_2018_12_12_led/output_dir
----------124467 指的是模型训练次数
6.根据训练结果生成pbtxt文件
训练的模型需要配合模型类别描述文件(.pbtxt)一起使用完成预测。用tf_text_graph_ssd.py生成pbtxt(mn_dataset_led.pbtxt)文件的指令如下,
python tf_text_graph_ssd.py --input ./XXX/output_dir/frozen_inference_graph.pb --config ./XXX/ssd_mobilenet_v2_oid_v4.config --output ./XXX/output_dir/mn_dataset_led.pbtxt
导出模型后(frozen_inference_graph.pb+mn_dataset_led.pbtxt),类别在项目中指定,最后再结合OpenCV 的DNN 模块功能,就可以完成模型的部署和应用。
End
相关推荐
- Optional是个好东西,如果用错了就太可惜了
-
原文出处:https://xie.infoq.cn/article/e3d1f0f4f095397c44812a5be我们都知道,在Java8新增了一个类-Optional,主要是用来解决程...
- IDEA建议:不要在字段上使用@Autowire了!
-
在使用IDEA写Spring相关的项目的时候,在字段上使用@Autowired注解时,总是会有一个波浪线提示:Fieldinjectionisnotrecommended.纳尼?我天天用,咋...
- Spring源码|Spring实例Bean的方法
-
Spring实例Bean的方法,在AbstractAutowireCapableBeanFactory中的protectedBeanWrappercreateBeanInstance(String...
- Spring技巧:深入研究Java 14和SpringBoot
-
在本期文章中,我们将介绍Java14中的新特性及其在构建基于SpringBoot的应用程序中的应用。开始,我们需要使用Java的最新版本,也是最棒的版本,Java14,它现在还没有发布。预计将于2...
- Java开发200+个学习知识路线-史上最全(框架篇)
-
1.Spring框架深入SpringIOC容器:BeanFactory与ApplicationContextBean生命周期:实例化、属性填充、初始化、销毁依赖注入方式:构造器注入、Setter注...
- 年末将至,Java 开发者必须了解的 15 个Java 顶级开源项目
-
专注于Java领域优质技术,欢迎关注作者:SnailClimbStar的数量统计于2019-12-29。1.JavaGuideGuide哥大三开始维护的,目前算是纯Java类型项目中Sta...
- 字节跨平台框架 Lynx 开源:一个 Web 开发者的原生体验
-
最近各大厂都在开源自己的跨平台框架,前脚腾讯刚宣布计划四月开源基于Kotlin的跨平台框架「Kuikly」,后脚字节跳动旧开源了他们的跨平台框架「Lynx」,如果说Kuikly是一个面向...
- 我要狠狠的反驳“公司禁止使用Lombok”的观点
-
经常在其它各个地方在说公司禁止使用Lombok,我一直不明白为什么不让用,今天看到一篇文章列举了一下“缺点”,这里我只想狠狠地反驳,看到列举的理由我竟无言以对。原文如下:下面,结合我自己使用Lomb...
- SpringBoot Lombok使用详解:从入门到精通(注解最全)
-
一、Lombok概述与基础使用1.1Lombok是什么Lombok是一个Java库,它通过注解的方式自动生成Java代码(如getter、setter、toString等),从而减少样板代码的编写,...
- Java 8之后的那些新特性(六):记录类 Record Class
-
Java是一门面向对象的语言,而对于面向对象的语言中,一个众所周知的概念就是,对象是包含属性与行为的。比如HR系统中都会有雇员的概念,那雇员会有姓名,ID身份,性别等,这些我们称之为属性;而雇员同时肯...
- 为什么大厂要求安卓开发者掌握Kotlin和Jetpack?优雅草卓伊凡
-
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡一、Kotlin:Android开发的现代语言选择1.1Kotlin是什么?Kotlin是由...
- Kotlin这5招太绝了!码农秒变优雅艺术家!
-
Kotlin因其简洁性、空安全性和与Java的无缝互操作性而备受喜爱。虽然许多开发者熟悉协程、扩展函数和数据类等特性,但还有一些鲜为人知的特性可以让你的代码从仅仅能用变得真正优雅且异常简洁。让我们来看...
- 自行部署一款免费高颜值的IT资产管理系统-咖啡壶chemex
-
在运维时,ICT资产太多怎么办,还是用excel表格来管理?效率太低,也不好多人使用。在几个IT资产管理系统中选择比较中,最终在Snipe-IT和chemex间选择了chemex咖啡壶。Snip...
- PHP对接百度语音识别技术(php对接百度语音识别技术实验报告)
-
引言在目前的各种应用场景中,语音识别技术已经越来越常用,并且其应用场景正在不断扩大。百度提供的语音识别服务允许用户通过简单的接口调用,将语音内容转换为文本。本文将通过PHP语言集成百度的语音识别服务,...
- 知识付费系统功能全解析(知识付费项目怎么样)
-
开发知识付费系统需包含核心功能模块,确保内容变现、用户体验及运营管理需求。以下是完整功能架构:一、用户端功能注册登录:手机号/邮箱注册,第三方登录(微信、QQ)内容浏览:分类展示课程、文章、音频等付费...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)