百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

使用DataFrame计算两列的总和和最大值_[python]

liuian 2025-04-09 17:48 13 浏览

【如果对您有用,请关注并转发,谢谢~~】

最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便方法(方案二),方案一是使用传统循环方法计算。

采用以下测试数据,用前3列求红色区域两列数据。


方案一

使用传统每行的进行循环计算求和与最大值


import pandas as pd

# 设置测试样例数据
df = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90],"prices": [120, 110, 100, 90, 150, 90] }
)

# 创建求和与最大值列
df['Total'] = None
df['Max'] = None
df

# 给每列设置index
index_selling=df.columns.get_loc('Units')
index_cost=df.columns.get_loc('prices')
index_total=df.columns.get_loc('Total')
index_max=df.columns.get_loc('Max')

# 循环每行进行求和
for row in range(0, len(df)):
    df.iat[row, index_total] = df.iat[row,index_selling] + df.iat[row, index_cost]
    if df.iat[row, index_selling] > df.iat[row, index_cost]:
        df.iat[row, index_max] = df.iat[row, index_selling]
    else:
        df.iat[row, index_max] = df.iat[row, index_cost]
df



方案二

采用Dataframe的对2列或多列需要先转置再计算,然后进行求和与最大值。df.max()默认对每一列取最大值。

import pandas as pd

# 设置测试样例数据
df = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90],"prices": [120, 110, 100, 90, 150, 90] }
)

# 核心关键,计算多列数据求和与最大值
df["Total"]=df.loc[:,["Units","prices"]].T.sum()
df["Max"]=df.loc[:,["Units","prices"]].T.max()
df


相关推荐

深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能

引言在现代应用程序中,数据的存储和处理变得愈发复杂多样。MySQL8.0引入了丰富的JSON相关函数,为我们提供了更灵活的数据存储和检索方式。本文将深入探讨MySQL8.0中的JSON...

MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)

前言虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使...

MySQL的json查询之json_array(mysql json_search)

json_array顾名思义就是创建一个数组,实际的用法,我目前没有想到很好的使用场景。使用官方的例子说明一下吧。例一selectjson_array(1,2,3,4);json_array虽然单独...

头条创作挑战赛#一、LSTM 原理 长短期记忆网络

#头条创作挑战赛#一、LSTM原理长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度...

TensorBoard最全使用教程:看这篇就够了

机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍TensorFlow的开源工具套件,称为TensorBoard,虽然他是TensorFlow...

图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比

本文约4600字,建议阅读10分钟本文介绍了图神经网络版本的对比。KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Ar...

kornia,一个实用的 Python 库!(python kkb_tools)

大家好,今天为大家分享一个实用的Python库-kornia。Github地址:https://github.com/kornia/kornia/Kornia是一个基于PyTorch的开源计算...

图像分割掩码标注转YOLO多边形标注

Ultralytics团队付出了巨大的努力,使创建自定义YOLO模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练yolo分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的...

[python] 向量检索库Faiss使用指北

Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完...

如何把未量化的 70B 大模型加载到笔记本电脑上运行?

并行运行70B大模型我们已经看到,量化已经成为在低端GPU(比如Colab、Kaggle等)上加载大型语言模型(LLMs)的最常见方法了,但这会降低准确性并增加幻觉现象。那如果你和你的朋友们...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

人工智能——图像识别(人工智能图像识别流程)

概述图像识别(ImageRecognition)是计算机视觉的核心任务之一,旨在通过算法让计算机理解图像内容,包括分类(识别物体类别)、检测(定位并识别多个物体)、分割(像素级识别)等,常见的应用场...

PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法

在上一篇文章中,我们介绍了DeepDeterministicPolicyGradient(DDPG)算法,并使用它解决了Pendulum问题。本文将深入探讨TwinDelayed...

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

分组查询注意力(GroupedQueryAttention)是一种在大型语言模型中的多查询注意力(MQA)和多头注意力(MHA)之间进行插值的方法,它的目标是在保持MQA速度的同时...

pytorch如何快速创建具有特殊意思的tensor张量?

专栏推荐正文我们通过值可以看到torch.empty并没有进行初始化创建tensor并进行随机初始化操作,常用rand/rand_like,randint正态分布(0,1)指定正态分布的均值还有方差i...